Android Audio System 之一:AudioTrack如何与AudioFlinger交换音频数据

来自个人维基
跳转至: 导航搜索

目录

引子

Android Framework的音频子系统中,每一个音频流对应着一个AudioTrack类的一个实例,每个AudioTrack会在创建时注册到AudioFlinger中,由AudioFlinger把所有的AudioTrack进行混合(Mixer),然后输送到AudioHardware中进行播放,目前Android的Froyo版本设定了同时最多可以创建32个音频流,也就是说,Mixer最多会同时处理32个AudioTrack的数据流。

如何使用AudioTrack

AudioTrack的主要代码位于 frameworks\base\media\libmedia\audiotrack.cpp中。现在先通过一个例子来了解一下如何使用AudioTrack,ToneGenerator是android中产生电话拨号音和其他音调波形的一个实现,我们就以它为例子:

ToneGenerator的初始化函数:

bool ToneGenerator::initAudioTrack() {   
   // Open audio track in mono, PCM 16bit, default sampling rate, default buffer size   
    mpAudioTrack = new AudioTrack();   
    mpAudioTrack->set(mStreamType,   
                      0,   
                      AudioSystem::PCM_16_BIT,   
                      AudioSystem::CHANNEL_OUT_MONO,   
                      0,   
                      0,   
                      audioCallback,   
                      this,   
                      0,   
                      0,   
                      mThreadCanCallJava);   
    if (mpAudioTrack->initCheck() != NO_ERROR) {   
        LOGE("AudioTrack->initCheck failed");   
        goto initAudioTrack_exit;   
    }   
    mpAudioTrack->setVolume(mVolume, mVolume);   
    mState = TONE_INIT;   
    ......   
 }

可见,创建步骤很简单,先new一个AudioTrack的实例,然后调用set成员函数完成参数的设置并注册到AudioFlinger中,然后可以调用其他诸如设置音量等函数进一步设置音频参数。其中,一个重要的参数是audioCallback,audioCallback是一个回调函数,负责响应AudioTrack的通知,例如填充数据、循环播放、播放位置触发等等。回调函数的写法通常像这样:

void ToneGenerator::audioCallback(int event, void* user, void *info) {   
    if (event != AudioTrack::EVENT_MORE_DATA) return;   
    AudioTrack::Buffer *buffer = static_cast<AudioTrack::Buffer *>(info);   
    ToneGenerator *lpToneGen = static_cast<ToneGenerator *>(user);   
    short *lpOut = buffer->i16;   
    unsigned int lNumSmp = buffer->size/sizeof(short);   
    const ToneDescriptor *lpToneDesc = lpToneGen->mpToneDesc;   
    if (buffer->size == 0) return;   
 
    // Clear output buffer: WaveGenerator accumulates into lpOut buffer   
    memset(lpOut, 0, buffer->size);   
    ......   
    // 以下是产生音调数据的代码,略....   
}

该函数首先判断事件的类型是否是EVENT_MORE_DATA,如果是,则后续的代码会填充相应的音频数据后返回,当然你可以处理其他事件,以下是可用的事件类型:

enum event_type {
        EVENT_MORE_DATA = 0,        // Request to write more data to PCM buffer.
        EVENT_UNDERRUN = 1,         // PCM buffer underrun occured.
        EVENT_LOOP_END = 2,         // Sample loop end was reached; playback restarted from loop start if loop count was not 0.
        EVENT_MARKER = 3,           // Playback head is at the specified marker position (See setMarkerPosition()).
        EVENT_NEW_POS = 4,          // Playback head is at a new position (See setPositionUpdatePeriod()).
        EVENT_BUFFER_END = 5        // Playback head is at the end of the buffer.
    };

开始播放:

mpAudioTrack->start();

停止播放:

mpAudioTrack->stop();

只要简单地调用成员函数start()和stop()即可。

AudioTrack和AudioFlinger的通信机制

通常,AudioTrack和AudioFlinger并不在同一个进程中,它们通过android中的binder机制建立联系。

AudioFlinger是android中的一个service,在android启动时就已经被加载。下面这张图展示了他们两个的关系:

图一 AudioTrack和AudioFlinger的关系

AudioSystem AudioTrack 1.png


我们可以这样理解这张图的含义:

  • audio_track_cblk_t实现了一个环形FIFO;
  • AudioTrack是FIFO的数据生产者;
  • AudioFlinger是FIFO的数据消费者。

建立联系的过程

下面的序列图展示了AudioTrack和AudioFlinger建立联系的过程:


图二 AudioTrack和AudioFlinger建立联系

AudioSystem AudioTrack 2.jpg

解释一下过程:

  • Framework或者Java层通过JNI,new AudioTrack();
  • 根据StreamType等参数,通过一系列的调用getOutput();
  • 如有必要,AudioFlinger根据StreamType打开不同硬件设备;
  • AudioFlinger为该输出设备创建混音线程: MixerThread(),并把该线程的id作为getOutput()的返回值返回给AudioTrack;
  • AudioTrack通过binder机制调用AudioFlinger的createTrack();
  • AudioFlinger注册该AudioTrack到MixerThread中;
  • AudioFlinger创建一个用于控制的TrackHandle,并以IAudioTrack这一接口作为createTrack()的返回值;
  • AudioTrack通过IAudioTrack接口,得到在AudioFlinger中创建的FIFO(audio_track_cblk_t);
  • AudioTrack创建自己的监控线程:AudioTrackThread;

自此,AudioTrack建立了和AudioFlinger的全部联系工作,接下来,AudioTrack可以:

  • 通过IAudioTrack接口控制该音轨的状态,例如start,stop,pause等等;
  • 通过对FIFO的写入,实现连续的音频播放;
  • 监控线程监控事件的发生,并通过audioCallback回调函数与用户程序进行交互;

FIFO的管理

audio_track_cblk_t
audio_track_cblk_t这个结构是FIFO实现的关键,该结构是在createTrack的时候,由AudioFlinger申请相应的内存,然后通过IMemory接口返回AudioTrack的,这样AudioTrack和AudioFlinger管理着同一个audio_track_cblk_t,通过它实现了环形FIFO,AudioTrack向FIFO中写入音频数据,AudioFlinger从FIFO中读取音频数据,经Mixer后送给AudioHardware进行播放。

audio_track_cblk_t的主要数据成员:

  • user -- AudioTrack当前的写位置的偏移
  • userBase -- AudioTrack写偏移的基准位置,结合user的值方可确定真实的FIFO地址指针
  • server -- AudioFlinger当前的读位置的偏移
  • serverBase -- AudioFlinger读偏移的基准位置,结合server的值方可确定真实的FIFO地址指针
  • frameCount -- FIFO的大小,以音频数据的帧为单位,16bit的音频每帧的大小是2字节
  • buffers -- 指向FIFO的起始地址
  • out -- 音频流的方向,对于AudioTrack,out=1,对于AudioRecord,out=0

audio_track_cblk_t的主要成员函数:

framesAvailable_l()和framesAvailable()用于获取FIFO中可写的空闲空间的大小,只是加锁和不加锁的区别。

uint32_t audio_track_cblk_t::framesAvailable_l()   
{   
    uint32_t u = this->user;   
    uint32_t s = this->server;   
    if (out) {   
        uint32_t limit = (s < loopStart) ? s : loopStart;   
        return limit + frameCount - u;   
    } else {   
        return frameCount + u - s;   
    }   
}  
uint32_t audio_track_cblk_t::framesAvailable_l()
{
    uint32_t u = this->user;
    uint32_t s = this->server;
    if (out) {
        uint32_t limit = (s < loopStart) ? s : loopStart;
        return limit + frameCount - u;
    } else {
        return frameCount + u - s;
    }
}


framesReady()用于获取FIFO中可读取的空间大小。

uint32_t audio_track_cblk_t::framesReady()   
{   
    uint32_t u = this->user;   
    uint32_t s = this->server;   
    if (out) {   
        if (u < loopEnd) {   
            return u - s;   
        } else {   
            Mutex::Autolock _l(lock);   
            if (loopCount >= 0) {   
                return (loopEnd - loopStart)*loopCount + u - s;   
            } else {   
                return UINT_MAX;   
            }   
        }   
    } else {   
        return s - u;   
    }   
}

我们看看下面的示意图:

              ________________________________________________________________________________________

              ^                          ^                             ^                           ^

       buffer_start              server(s)                 user(u)                  buffer_end

很明显,frameReady = u - s,frameAvalible = frameCount - frameReady = frameCount - u + s

可能有人会问,应为这是一个环形的buffer,一旦user越过了buffer_end以后,应该会发生下面的情况:

               _______________________________________________________________________________________

              ^                ^             ^                                                     ^

       buffer_start     user(u)     server(s)                                   buffer_end

这时候u在s的前面,用上面的公式计算就会错误,但是android使用了一些技巧,保证了上述公式一直成立。我们先看完下面三个函数的代码再分析:


uint32_t audio_track_cblk_t::stepUser(uint32_t frameCount)   
{   
    uint32_t u = this->user;   
    u += frameCount;   
    ......   
    if (u >= userBase + this->frameCount) {   
        userBase += this->frameCount;   
    }   
    this->user = u;   
    ......   
    return u;   
}  
uint32_t audio_track_cblk_t::stepUser(uint32_t frameCount)
{
    uint32_t u = this->user;
    u += frameCount;
    ......
    if (u >= userBase + this->frameCount) {
        userBase += this->frameCount;
    }
    this->user = u;
    ......
    return u;
}
bool audio_track_cblk_t::stepServer(uint32_t frameCount)   
{   
    // the code below simulates lock-with-timeout   
    // we MUST do this to protect the AudioFlinger server   
    // as this lock is shared with the client.   
    status_t err;   
    err = lock.tryLock();   
    if (err == -EBUSY) { // just wait a bit   
        usleep(1000);   
        err = lock.tryLock();   
    }   
    if (err != NO_ERROR) {   
        // probably, the client just died.   
        return false;   
    }   
    uint32_t s = this->server;   
    s += frameCount;   
    // 省略部分代码   
     // ......   
    if (s >= serverBase + this->frameCount) {   
        serverBase += this->frameCount;   
    }   
    this->server = s;   
    cv.signal();   
    lock.unlock();   
    return true;   
}  
bool audio_track_cblk_t::stepServer(uint32_t frameCount)
{
    // the code below simulates lock-with-timeout
    // we MUST do this to protect the AudioFlinger server
    // as this lock is shared with the client.
    status_t err;
    err = lock.tryLock();
    if (err == -EBUSY) { // just wait a bit
        usleep(1000);
        err = lock.tryLock();
    }
    if (err != NO_ERROR) {
        // probably, the client just died.
        return false;
    }
    uint32_t s = this->server;
    s += frameCount;
    // 省略部分代码
     // ......
    if (s >= serverBase + this->frameCount) {
        serverBase += this->frameCount;
    }
    this->server = s;
    cv.signal();
    lock.unlock();
    return true;
}
void* audio_track_cblk_t::buffer(uint32_t offset) const  
{   
    return (int8_t *)this->buffers + (offset - userBase) * this->frameSize;   
}  
void* audio_track_cblk_t::buffer(uint32_t offset) const
{
    return (int8_t *)this->buffers + (offset - userBase) * this->frameSize;
}

stepUser()和stepServer的作用是调整当前偏移的位置,可以看到,他们仅仅是把成员变量user或server的值加上需要移动的数量,user和server的值并不考虑FIFO的边界问题,随着数据的不停写入和读出,user和server的值不断增加,只要处理得当,user总是出现在server的后面,因此frameAvalible()和frameReady()中的算法才会一直成立。根据这种算法,user和server的值都可能大于FIFO的大小:framCount,那么,如何确定真正的写指针的位置呢?这里需要用到userBase这一成员变量,在stepUser()中,每当user的值越过(userBase+frameCount),userBase就会增加frameCount,这样,映射到FIFO中的偏移总是可以通过(user-userBase)获得。因此,获得当前FIFO的写地址指针可以通过成员函数buffer()返回:

p = mClbk->buffer(mclbk->user);

在AudioTrack中,封装了两个函数:obtainBuffer()和releaseBuffer()操作FIFO,obtainBuffer()获得当前可写的数量和写指针的位置,releaseBuffer()则在写入数据后被调用,它其实就是简单地调用stepUser()来调整偏移的位置。

IMemory接口

在createTrack的过程中,AudioFlinger会根据传入的frameCount参数,申请一块内存,AudioTrack可以通过IAudioTrack接口的getCblk()函数获得指向该内存块的IMemory接口,然后AudioTrack通过该IMemory接口的pointer()函数获得指向该内存块的指针,这块内存的开始部分就是audio_track_cblk_t结构,紧接着是大小为frameSize的FIFO内存。

              IMemory->pointer() ---->|__________________________________________________________________

                                    |__audio_track_cblk_t__|_______buffer of FIFO(size==frameCount)____|

看看AudioTrack的createTrack()的代码就明白了:

sp<IAudioTrack> track = audioFlinger->createTrack(getpid(),   
                                                      streamType,   
                                                      sampleRate,   
                                                      format,   
                                                      channelCount,   
                                                      frameCount,   
                                                      ((uint16_t)flags) << 16,   
                                                      sharedBuffer,   
                                                      output,   
                                                      &status);   
    // 得到IMemory接口   
    sp<IMemory> cblk = track->getCblk();                          
    mAudioTrack.clear();   
    mAudioTrack = track;   
    mCblkMemory.clear();   
    mCblkMemory = cblk;   
    // 得到audio_track_cblk_t结构   
    mCblk = static_cast<audio_track_cblk_t*>(cblk->pointer());    
    // 该FIFO用于输出       
    mCblk->out = 1;                                               
    // Update buffer size in case it has been limited by AudioFlinger during track creation   
    mFrameCount = mCblk->frameCount;   
    if (sharedBuffer == 0) {   
       // 给FIFO的起始地址赋值   
        mCblk->buffers = (char*)mCblk + sizeof(audio_track_cblk_t);   
    } else {   
        ..........           
    }


相关文章

Android Audio System 之二:AudioFlinger

Android Audio System 之三: AudioPolicyService 和 AudioPolicyManager



http://blog.csdn.net/DroidPhone/archive/2010/10/14/5941344.aspx