12799
查看ML的源代码
ML
0
←
ML
跳转至:
导航
、
搜索
因为以下原因,你没有权限编辑本页:
你被禁止执行你刚才请求的操作。
您可以查看并复制此页面的源代码:
=Cost Function损失函数= Squared error function/Mean squared function均方误差: <math>J(θ)=\frac{1}{2m}\sum_{i=1}^m(h_θ(x_i)-y_i)^2</math> Cross entropy交叉熵: <math>J(θ)=-\frac{1}{m}\sum_{i=1}^m[y^{(i)}*logh_θ(x^{(i)})+(1-y^{(i)})*log(1-h_θ(x^{(i)}))]</math> =Gradient Descent梯度下降= <math>θ_j:=θ_j+α\frac{∂}{∂θ_j}J(θ)</math> 对于线性模型,其损失函数为均方误差,故有: <math>α\frac{∂}{∂θ_j}J(θ)= \frac{∂}{∂θ_j}(\frac{1}{2m}\sum_{i=1}^m(h_θ(x_i)-y_i)^2)</math> :<math>= \frac{1}{2m}\frac{∂}{∂θ_j}(\sum_{i=1}^m(h_θ(x_i)-y_i)^2)</math> :<math>= \frac{1}{2m}\sum_{i=1}^m( \frac{∂}{∂θ_j}(h_θ(x_i)-y_i)^2 )</math> :<math>= \frac{1}{m}\sum_{i=1}^m( (h_θ(x_i)-y_i) \frac{∂}{∂θ_j}h_θ(x_i) ) //链式求导法式</math> :<math>= \frac{1}{m}\sum_{i=1}^m( (h_θ(x_i)-y_i) \frac{∂}{∂θ_j}x_iθ ) </math> :<math>= \frac{1}{m}\sum_{i=1}^m( (h_θ(x_i)-y_i) \frac{∂}{∂θ_j}\sum_{k=0}^nx_{ik}θ_k ) </math> 对于j>=1: :<math>= \frac{1}{m}\sum_{i=1}^m( (h_θ(x_i)-y_i) x_{ij} ) </math> :<math>= \frac{1}{2m}\frac{∂}{∂θ_j} \sum_{i=1}^m(x_iθ-y_i)^2 </math> :<math>= \frac{1}{m}\frac{∂}{∂θ_j} \sum_{i=1}^mx_{ij}θ_j //链式求导法式</math>
返回
ML
。
导航菜单
个人工具
   
个人维基
注册
登录
名字空间
页面
变换
查看
阅读
查看源代码
统计
查看历史
操作
搜索
导航
首页
Ubuntu
Android
C&CPP
Java
Python
大杂烩
最近更改
工具箱
所有页面
文件列表
特殊页面