“ML”的版本间的差异

来自个人维基
跳转至: 导航搜索
Gradient Descent梯度下降
第8行: 第8行:
 
<math>&alpha;\frac{&part;}{&part;&theta;_j}J(&theta;)= \frac{&part;}{&part;&theta;_j}(\frac{1}{2m}\sum_{i=1}^m(h_&theta;(x_i)-y_i)^2)</math>
 
<math>&alpha;\frac{&part;}{&part;&theta;_j}J(&theta;)= \frac{&part;}{&part;&theta;_j}(\frac{1}{2m}\sum_{i=1}^m(h_&theta;(x_i)-y_i)^2)</math>
 
:<math>= \frac{1}{2m}\frac{&part;}{&part;&theta;_j}(\sum_{i=1}^m(h_&theta;(x_i)-y_i)^2)</math>
 
:<math>= \frac{1}{2m}\frac{&part;}{&part;&theta;_j}(\sum_{i=1}^m(h_&theta;(x_i)-y_i)^2)</math>
 +
:<math>= \frac{1}{2m}\frac{&part;}{&part;&theta;_j} \sum_{i=1}^m(x_i&theta;-y_i)^2 </math>
 +
:<math>= \frac{1}{m}\frac{&part;}{&part;&theta;_j} \sum_{i=1}^mx_{ij}&theta;_j </math>

2018年12月21日 (五) 11:50的版本

Cost Function损失函数

Squared error function/Mean squared function均方误差: J(θ)=12mmi=1(hθ(xi)yi)2
Cross entropy交叉熵: J(θ)=1mmi=1[y(i)loghθ(x(i))+(1y(i))log(1hθ(x(i)))]

Gradient Descent梯度下降

θj:=θj+αθjJ(θ)
对于线性模型,其损失函数为均方误差,故有:
αθjJ(θ)=θj(12mmi=1(hθ(xi)yi)2)

=12mθj(mi=1(hθ(xi)yi)2)
=12mθjmi=1(xiθyi)2
=1mθjmi=1xijθj