“ML”的版本间的差异
来自个人维基
小 |
小 |
||
第11行: | 第11行: | ||
:<math>= \frac{1}{m}\sum_{i=1}^m( (h_θ(x_i)-y_i) \frac{∂}{∂θ_j}h_θ(x_i) ) //链式求导法式</math> | :<math>= \frac{1}{m}\sum_{i=1}^m( (h_θ(x_i)-y_i) \frac{∂}{∂θ_j}h_θ(x_i) ) //链式求导法式</math> | ||
:<math>= \frac{1}{m}\sum_{i=1}^m( (h_θ(x_i)-y_i) \frac{∂}{∂θ_j}x_iθ ) </math> | :<math>= \frac{1}{m}\sum_{i=1}^m( (h_θ(x_i)-y_i) \frac{∂}{∂θ_j}x_iθ ) </math> | ||
+ | :<math>= \frac{1}{m}\sum_{i=1}^m( (h_θ(x_i)-y_i) \frac{∂}{∂θ_j}\sum_{k=0}^nx_{ik}θ_k ) </math> | ||
+ | 对于j>=1: | ||
:<math>= \frac{1}{m}\sum_{i=1}^m( (h_θ(x_i)-y_i) x_{ij} ) </math> | :<math>= \frac{1}{m}\sum_{i=1}^m( (h_θ(x_i)-y_i) x_{ij} ) </math> | ||
:<math>= \frac{1}{2m}\frac{∂}{∂θ_j} \sum_{i=1}^m(x_iθ-y_i)^2 </math> | :<math>= \frac{1}{2m}\frac{∂}{∂θ_j} \sum_{i=1}^m(x_iθ-y_i)^2 </math> | ||
:<math>= \frac{1}{m}\frac{∂}{∂θ_j} \sum_{i=1}^mx_{ij}θ_j //链式求导法式</math> | :<math>= \frac{1}{m}\frac{∂}{∂θ_j} \sum_{i=1}^mx_{ij}θ_j //链式求导法式</math> |
2018年12月21日 (五) 12:24的版本
Cost Function损失函数
Squared error function/Mean squared function均方误差: J(θ)=12mm∑i=1(hθ(xi)−yi)2
Cross entropy交叉熵: J(θ)=−1mm∑i=1[y(i)∗loghθ(x(i))+(1−y(i))∗log(1−hθ(x(i)))]
Gradient Descent梯度下降
θj:=θj+α∂∂θjJ(θ)
对于线性模型,其损失函数为均方误差,故有:
α∂∂θjJ(θ)=∂∂θj(12mm∑i=1(hθ(xi)−yi)2)
- =12m∂∂θj(m∑i=1(hθ(xi)−yi)2)
- =12mm∑i=1(∂∂θj(hθ(xi)−yi)2)
- =1mm∑i=1((hθ(xi)−yi)∂∂θjhθ(xi))//链式求导法式
- =1mm∑i=1((hθ(xi)−yi)∂∂θjxiθ)
- =1mm∑i=1((hθ(xi)−yi)∂∂θjn∑k=0xikθk)
对于j>=1:
- =1mm∑i=1((hθ(xi)−yi)xij)
- =12m∂∂θjm∑i=1(xiθ−yi)2
- =1m∂∂θjm∑i=1xijθj//链式求导法式