“ML”的版本间的差异

来自个人维基
跳转至: 导航搜索
Gradient Descent梯度下降
第11行: 第11行:
 
:<math>= \frac{1}{m}\sum_{i=1}^m( (h_&theta;(x_i)-y_i) \frac{&part;}{&part;&theta;_j}h_&theta;(x_i) )  //链式求导法式</math>
 
:<math>= \frac{1}{m}\sum_{i=1}^m( (h_&theta;(x_i)-y_i) \frac{&part;}{&part;&theta;_j}h_&theta;(x_i) )  //链式求导法式</math>
 
:<math>= \frac{1}{m}\sum_{i=1}^m( (h_&theta;(x_i)-y_i) \frac{&part;}{&part;&theta;_j}x_i&theta; ) </math>
 
:<math>= \frac{1}{m}\sum_{i=1}^m( (h_&theta;(x_i)-y_i) \frac{&part;}{&part;&theta;_j}x_i&theta; ) </math>
:<math>= \frac{1}{m}\sum_{i=1}^m( (h_&theta;(x_i)-y_i) \frac{&part;}{&part;&theta;_j}\sum_{k=0}^nx_{ik}&theta;_k ) </math>
+
:<math>= \frac{1}{m}\sum_{i=1}^m( (h_&theta;(x_i)-y_i) \frac{&part;}{&part;&theta;_j}\sum_{k=0}^{n-1}x_{ik}&theta;_k ) </math>
 
对于j>=1:
 
对于j>=1:
 
:<math>= \frac{1}{m}\sum_{i=1}^m( (h_&theta;(x_i)-y_i) x_{ij} ) </math>
 
:<math>= \frac{1}{m}\sum_{i=1}^m( (h_&theta;(x_i)-y_i) x_{ij} ) </math>
:<math>= \frac{1}{2m}\frac{&part;}{&part;&theta;_j} \sum_{i=1}^m(x_i&theta;-y_i)^2 </math>
+
:<math>= \frac{1}{m} (h_&theta;(x)-y) x_{j} </math>
:<math>= \frac{1}{m}\frac{&part;}{&part;&theta;_j} \sum_{i=1}^mx_{ij}&theta;_j //链式求导法式</math>
+

2018年12月21日 (五) 12:26的版本

Cost Function损失函数

Squared error function/Mean squared function均方误差: J(θ)=12mmi=1(hθ(xi)yi)2
Cross entropy交叉熵: J(θ)=1mmi=1[y(i)loghθ(x(i))+(1y(i))log(1hθ(x(i)))]

Gradient Descent梯度下降

θj:=θj+αθjJ(θ)
对于线性模型,其损失函数为均方误差,故有:
αθjJ(θ)=θj(12mmi=1(hθ(xi)yi)2)

=12mθj(mi=1(hθ(xi)yi)2)
=12mmi=1(θj(hθ(xi)yi)2)
=1mmi=1((hθ(xi)yi)θjhθ(xi))//
=1mmi=1((hθ(xi)yi)θjxiθ)
=1mmi=1((hθ(xi)yi)θjn1k=0xikθk)

对于j>=1:

=1mmi=1((hθ(xi)yi)xij)
=1m(hθ(x)y)xj