“ML”的版本间的差异
来自个人维基
小 (→Gradient Descent梯度下降) |
小 (→Gradient Descent梯度下降) |
||
第5行: | 第5行: | ||
=Gradient Descent梯度下降= | =Gradient Descent梯度下降= | ||
<math>θ_j:=θ_j+α\frac{∂}{∂θ_j}J(θ)</math> | <math>θ_j:=θ_j+α\frac{∂}{∂θ_j}J(θ)</math> | ||
− | + | 对于线性模型,其损失函数为均方误差,故有(这里输入训练数据x为m*n矩阵, 线性参数<math>θ</math>为n*1): | |
− | <math>& | + | <math>\frac{∂}{∂θ_j}J(θ)= \frac{∂}{∂θ_j}(\frac{1}{2m}\sum_{i=1}^m(h_θ(x_i)-y_i)^2)</math> |
:<math>= \frac{1}{2m}\frac{∂}{∂θ_j}(\sum_{i=1}^m(h_θ(x_i)-y_i)^2)</math> | :<math>= \frac{1}{2m}\frac{∂}{∂θ_j}(\sum_{i=1}^m(h_θ(x_i)-y_i)^2)</math> | ||
:<math>= \frac{1}{2m}\sum_{i=1}^m( \frac{∂}{∂θ_j}(h_θ(x_i)-y_i)^2 )</math> | :<math>= \frac{1}{2m}\sum_{i=1}^m( \frac{∂}{∂θ_j}(h_θ(x_i)-y_i)^2 )</math> |
2018年12月21日 (五) 12:34的版本
Cost Function损失函数
Squared error function/Mean squared function均方误差: J(θ)=12mm∑i=1(hθ(xi)−yi)2
Cross entropy交叉熵: J(θ)=−1mm∑i=1[y(i)∗loghθ(x(i))+(1−y(i))∗log(1−hθ(x(i)))]
Gradient Descent梯度下降
θj:=θj+α∂∂θjJ(θ)
对于线性模型,其损失函数为均方误差,故有(这里输入训练数据x为m*n矩阵, 线性参数θ为n*1):
∂∂θjJ(θ)=∂∂θj(12mm∑i=1(hθ(xi)−yi)2)
- =12m∂∂θj(m∑i=1(hθ(xi)−yi)2)
- =12mm∑i=1(∂∂θj(hθ(xi)−yi)2)
- =1mm∑i=1((hθ(xi)−yi)∂∂θjhθ(xi))//链式求导法式
- =1mm∑i=1((hθ(xi)−yi)∂∂θjxiθ)
- =1mm∑i=1((hθ(xi)−yi)∂∂θjn−1∑k=0xikθk)
对于j>=1:
- =1mm∑i=1((hθ(xi)−yi)xij)
- =1m(hθ(x)−y)xj