“ML”的版本间的差异

来自个人维基
跳转至: 导航搜索
Gradient Descent梯度下降
Gradient Descent梯度下降
第5行: 第5行:
 
=Gradient Descent梯度下降=
 
=Gradient Descent梯度下降=
 
<math>&theta;_j:=&theta;_j+&alpha;\frac{&part;}{&part;&theta;_j}J(&theta;)</math>
 
<math>&theta;_j:=&theta;_j+&alpha;\frac{&part;}{&part;&theta;_j}J(&theta;)</math>
对于线性模型,其损失函数为均方误差,故有(这里输入训练数据x为m*n矩阵, 线性参数<math>&theta;</math>为n*1):
+
对于线性模型,其损失函数为均方误差,故有(这里输入训练数据x为m*n矩阵, 线性参数<math>&theta;</math>为n*1,<math>x_i</math>代表训练矩阵中的第i行,<math>x_{ik}</math>代表第i行第k列):
 
<math>\frac{&part;}{&part;&theta;_j}J(&theta;)= \frac{&part;}{&part;&theta;_j}(\frac{1}{2m}\sum_{i=1}^m(h_&theta;(x_i)-y_i)^2)</math>
 
<math>\frac{&part;}{&part;&theta;_j}J(&theta;)= \frac{&part;}{&part;&theta;_j}(\frac{1}{2m}\sum_{i=1}^m(h_&theta;(x_i)-y_i)^2)</math>
 
:<math>= \frac{1}{2m}\frac{&part;}{&part;&theta;_j}(\sum_{i=1}^m(h_&theta;(x_i)-y_i)^2)</math>
 
:<math>= \frac{1}{2m}\frac{&part;}{&part;&theta;_j}(\sum_{i=1}^m(h_&theta;(x_i)-y_i)^2)</math>

2018年12月21日 (五) 12:37的版本

Cost Function损失函数

Squared error function/Mean squared function均方误差:
Cross entropy交叉熵:

Gradient Descent梯度下降


对于线性模型,其损失函数为均方误差,故有(这里输入训练数据x为m*n矩阵, 线性参数为n*1,代表训练矩阵中的第i行,代表第i行第k列):

对于j>=1: