“ML”的版本间的差异

来自个人维基
跳转至: 导航搜索
Week2
Week3
第74行: 第74行:
 
<math>z = &theta;^Tx</math>
 
<math>z = &theta;^Tx</math>
 
<math>g(z) = \frac{1}{1+e^{-z}}</math>
 
<math>g(z) = \frac{1}{1+e^{-z}}</math>
 +
 +
==Cost Function==
 +
<math>J(&theta;)=-\frac{1}{m}\sum_{i=1}^m[y^{(i)}*logh_&theta;(x^{(i)})+(1-y^{(i)})*log(1-h_&theta;(x^{(i)}))]</math>
 +
向量化形式:
 +
<math>
 +
 +
</math>

2018年12月21日 (五) 21:42的版本

目录

 [隐藏

定义

约定:
x(i)j:训练数据中的第i列中的第j个特征值 value of feature j in the ith training example
x(i):训练数据中第i列 the input (features) of the ith training example
m:训练数据集条数 the number of training examples
n:特征数量 the number of features

Week1

Cost Function损失函数

Squared error function/Mean squared function均方误差: J(θ)=12mmi=1(hθ(x(i))y(i))2
Cross entropy交叉熵: J(θ)=1mmi=1[y(i)loghθ(x(i))+(1y(i))log(1hθ(x(i)))]

Gradient Descent梯度下降

θj:=θj+αθjJ(θ)
对于线性回归模型,其损失函数为均方误差,故有:
θjJ(θ)=θj(12mmi=1(hθ(x(i))y(i))2)

=12mθj(mi=1(hθ(x(i))y(i))2)
=12mmi=1(θj(hθ(x(i))y(i))2)
=1mmi=1((hθ(x(i))y(i))θjhθ(x(i)))//
=1mmi=1((hθ(x(i))y(i))θjx(i)θ)
=1mmi=1((hθ(x(i))y(i))θjnk=0x(i)kθk)

对于j>=1:

=1mmi=1((hθ(x(i))y(i))x(i)j)
=1m(hθ(x)y)xj

Week2

Multivariate Linear Regression

hθ(x)=θ0x0+θ1x1+θ2x2+...+θnxn

=[θ0x(1)0,θ0x(2)0,...,θ0x(m)0]+[θ1x(1)1,θ1x(2)1,...,θ1x(m)1]+...+[θnx(1)n,θnx(2)n,...,θnx(m)n]
=[θ0x(1)0+θ1x(1)1+...+θnx(1)n,   θ0x(2)0+θ1x(2)1+...+θnx(2)n,   θ0x(m)0+θ1x(m)1+...+θnx(m)n]
=θTx

其中,
x=|x0x1x2...xn|=|x(1)0x(2)0...x(m)0x(1)1x(2)1...x(m)1x(1)2x(2)2...x(m)2............x(1)nx(2)n...x(m)n|,θ=|θ0θ1θ2...θn|

m为训练数据组数,n为特征个数(通常,为了方便处理,会令x(i)0=1,i=1,2,...,m

Feature Scaling & Standard Normalization

xi:=xiμisi
其中,μi是第i个特征数据x_i的均值,而 si则要视情况而定:

  • Feature Scaling:sixi中最大值与最小值的差(max-min);
  • Standard Normalization:sixi中数据标准差(standard deviation)。

特别注意,通过 Feature scaling训练出模型后,在进行预测时,同样需要对输入特征数据进行归一化。

Normal Equation标准工程

θ=(XTX)1XTy

Week3

Sigmoid Function - S函数

hθ(x)=g(θTx)
z=θTx
g(z)=11+ez

Cost Function

J(θ)=1mmi=1[y(i)loghθ(x(i))+(1y(i))log(1hθ(x(i)))]
向量化形式: