“ML”的版本间的差异
小 (→Week3 - Logistic Regression) |
小 (→Week2) |
||
第24行: | 第24行: | ||
:<math>= \frac{1}{m} (h_θ(x)-y) x_{j} </math> | :<math>= \frac{1}{m} (h_θ(x)-y) x_{j} </math> | ||
− | =Week2= | + | =Week2 - Multivariate Linear Regression= |
− | ==Multivariate Linear | + | ==Multivariate Linear Regression模型的计算== |
<math>h_θ(x) = θ_0x_0 + θ_1x_1 + θ_2x_2 + ... + θ_nx_n</math> | <math>h_θ(x) = θ_0x_0 + θ_1x_1 + θ_2x_2 + ... + θ_nx_n</math> | ||
::<math> = [θ_0x_0^{(1)}, θ_0x_0^{(2)}, ..., θ_0x_0^{(m)}] + [θ_1x_1^{(1)}, θ_1x_1^{(2)}, ..., θ_1x_1^{(m)}] + ... + [θ_nx_n^{(1)}, θ_nx_n^{(2)}, ..., θ_nx_n^{(m)}] </math> | ::<math> = [θ_0x_0^{(1)}, θ_0x_0^{(2)}, ..., θ_0x_0^{(m)}] + [θ_1x_1^{(1)}, θ_1x_1^{(2)}, ..., θ_1x_1^{(m)}] + ... + [θ_nx_n^{(1)}, θ_nx_n^{(2)}, ..., θ_nx_n^{(m)}] </math> | ||
第57行: | 第57行: | ||
:m为训练数据组数,n为特征个数(通常,为了方便处理,会令<math>x_0^{(i)}=1, i=1,2,...,m)</math>。 | :m为训练数据组数,n为特征个数(通常,为了方便处理,会令<math>x_0^{(i)}=1, i=1,2,...,m)</math>。 | ||
− | == | + | ==数据归一化:Feature Scaling & Standard Normalization== |
<math> | <math> | ||
x_i := \frac{x_i-μ_i}{s_i} | x_i := \frac{x_i-μ_i}{s_i} |
2018年12月21日 (五) 22:44的版本
目录[隐藏] |
定义
- 约定:
- x(i)j:训练数据中的第i列中的第j个特征值 value of feature j in the ith training example
- x(i):训练数据中第i列 the input (features) of the ith training example
- m:训练数据集条数 the number of training examples
- n:特征数量 the number of features
Week1
Cost Function损失函数
Squared error function/Mean squared function均方误差: J(θ)=12mm∑i=1(hθ(x(i))−y(i))2
Cross entropy交叉熵: J(θ)=−1mm∑i=1[y(i)∗loghθ(x(i))+(1−y(i))∗log(1−hθ(x(i)))]
Gradient Descent梯度下降
θj:=θj−α∂∂θjJ(θ)
对于线性回归模型,其损失函数为均方误差,故有:
∂∂θjJ(θ)=∂∂θj(12mm∑i=1(hθ(x(i))−y(i))2)
- =12m∂∂θj(m∑i=1(hθ(x(i))−y(i))2)
- =12mm∑i=1(∂∂θj(hθ(x(i))−y(i))2)
- =1mm∑i=1((hθ(x(i))−y(i))∂∂θjhθ(x(i)))//链式求导法式
- =1mm∑i=1((hθ(x(i))−y(i))∂∂θjx(i)θ)
- =1mm∑i=1((hθ(x(i))−y(i))∂∂θjn∑k=0x(i)kθk)
对于j>=1:
- =1mm∑i=1((hθ(x(i))−y(i))x(i)j)
- =1m(hθ(x)−y)xj
Week2 - Multivariate Linear Regression
Multivariate Linear Regression模型的计算
hθ(x)=θ0x0+θ1x1+θ2x2+...+θnxn
- =[θ0x(1)0,θ0x(2)0,...,θ0x(m)0]+[θ1x(1)1,θ1x(2)1,...,θ1x(m)1]+...+[θnx(1)n,θnx(2)n,...,θnx(m)n]
- =[θ0x(1)0+θ1x(1)1+...+θnx(1)n, θ0x(2)0+θ1x(2)1+...+θnx(2)n, θ0x(m)0+θ1x(m)1+...+θnx(m)n]
- =θTx
其中,
x=|x0x1x2...xn|=|x(1)0x(2)0...x(m)0x(1)1x(2)1...x(m)1x(1)2x(2)2...x(m)2............x(1)nx(2)n...x(m)n|,θ=|θ0θ1θ2...θn|
- m为训练数据组数,n为特征个数(通常,为了方便处理,会令x(i)0=1,i=1,2,...,m)。
数据归一化:Feature Scaling & Standard Normalization
xi:=xi−μisi
其中,μi是第i个特征数据x_i的均值,而 si则要视情况而定:
- Feature Scaling:si为xi中最大值与最小值的差(max-min);
- Standard Normalization:si为xi中数据标准差(standard deviation)。
特别注意,通过 Feature scaling训练出模型后,在进行预测时,同样需要对输入特征数据进行归一化。
Normal Equation标准工程
θ=(XTX)−1XTy
Week3 - Logistic Regression & Overfitting
Logistic Regression
Sigmoid Function - S函数
hθ(x)=g(θTx)
z=θTx
g(z)=11+e−z
Cost Function
J(θ)=−1mm∑i=1[y(i)∗loghθ(x(i))+(1−y(i))∗log(1−hθ(x(i)))]
向量化形式:
J(θ)=1m(−yTlog(h)−(1−y)Tlog(1−h))
Gradient Descent
θj:=θj−α∂∂θjJ(θ)
- =θj−αmm∑i=1((hθ(x(i))−y(i))x(i)j)
向量化形式:
θ=θ−αmXT(g(Xθ)−→y)
解决Overfitting
针对 hypothesis function,引入 Regularation parameter(λ)到 Cost function中:
J(θ)=12mm∑i=1(hθ(x(i))−y(i))2+λn∑j=1θ2j