“ML”的版本间的差异
小 (→Gradient Descent) |
小 (→Gradient Descent) |
||
第91行: | 第91行: | ||
:::<math>=-\frac{1}{m}\sum_{i=1}^m\frac{∂}{∂θ_j}[y^{(i)}*logh_θ(x^{(i)})+(1-y^{(i)})*log(1-h_θ(x^{(i)}))]</math> | :::<math>=-\frac{1}{m}\sum_{i=1}^m\frac{∂}{∂θ_j}[y^{(i)}*logh_θ(x^{(i)})+(1-y^{(i)})*log(1-h_θ(x^{(i)}))]</math> | ||
:::其中, | :::其中, | ||
− | :::<math>\frac{∂}{∂θ_j}[y^{(i)}*logh_θ(x^{(i)})] = y^{(i)}*\frac{∂}{∂θ_j}[logh_θ(x^{(i)})]</math> | + | :::<math>\frac{∂}{∂θ_j}[y^{(i)}*logh_θ(x^{(i)})] = y^{(i)}*\frac{∂}{∂θ_j}[logh_θ(x^{(i)})] = y^{(i)}*\frac{1}{h_θ(x^{(i)})*ln(2)}*\frac{∂}{∂θ_j}h_θ(x^{(i)})</math> |
− | + | :::<math>\frac{∂}{∂θ_j}[(1-y^{(i)})*log(1-h_θ(x^{(i)}))] = (1-y^{(i)})*\frac{∂}{∂θ_j}[log(1-h_θ(x^{(i)}))] = (1-y^{(i)})*\frac{1}{(1-h_θ(x^{(i)}))*ln(2)}*\frac{∂}{∂θ_j}(1-h_θ(x^{(i)}))</math> | |
− | + | ::::而<math> \frac{∂}{∂θ_j}h_θ(x^{(i)}) = g'(z)*z'(θ^Tx^{(i)}) = (\frac{1}{1+e^{-z}})'*z'(θ^Tx^{(i)})</math> | |
− | + | :::::::::<math> = ((1+e^{-z})^{-1})'*z'(θ^Tx^{(i)})</math> | |
− | + | :::::::::<math> = \frac{e^{-z}}{(1+e^{-z})^{2}}*z'(θ^Tx^{(i)})</math> | |
− | + | :::::::::<math> = \frac{e^{-z}}{(1+e^{-z})^{2}}*\frac{∂}{∂θ_j}(θ^Tx^{(i)})</math> | |
− | + | :::::::::<math> = \frac{e^{-z}}{(1+e^{-z})^{2}}*\frac{∂}{∂θ_j}(θ_0*x_0^{(i)} + θ_1*x_1^{(i)} + θ_2*x_2^{(i)} +...+ θ_j*x_j^{(i)} +...+ θ_n*x_n^{(i)} )</math> | |
− | + | :::::::::<math> = \frac{e^{-z}}{(1+e^{-z})^{2}}*x_j^{(i)}</math> | |
2018年12月25日 (二) 17:33的版本
目录[隐藏] |
定义
- 约定:
- x(i)j:训练数据中的第i列中的第j个特征值 value of feature j in the ith training example
- x(i):训练数据中第i列 the input (features) of the ith training example
- m:训练数据集条数 the number of training examples
- n:特征数量 the number of features
Week1 - 机器学习基本概念
Cost Function损失函数
Squared error function/Mean squared function均方误差: J(θ)=12mm∑i=1(hθ(x(i))−y(i))2
Cross entropy交叉熵: J(θ)=−1mm∑i=1[y(i)∗loghθ(x(i))+(1−y(i))∗log(1−hθ(x(i)))]
Gradient Descent梯度下降
θj:=θj−α∂∂θjJ(θ)
对于线性回归模型,其损失函数为均方误差,故有:
∂∂θjJ(θ)=∂∂θj(12mm∑i=1(hθ(x(i))−y(i))2)
- =12m∂∂θj(m∑i=1(hθ(x(i))−y(i))2)
- =12mm∑i=1(∂∂θj(hθ(x(i))−y(i))2)
- =1mm∑i=1((hθ(x(i))−y(i))∂∂θjhθ(x(i)))//链式求导法式
- =1mm∑i=1((hθ(x(i))−y(i))∂∂θjx(i)θ)
- =1mm∑i=1((hθ(x(i))−y(i))∂∂θjn∑k=0x(i)kθk)
对于j>=1:
- =1mm∑i=1((hθ(x(i))−y(i))x(i)j)
- =1m(hθ(x)−y)xj
Week2 - Multivariate Linear Regression
Multivariate Linear Regression模型的计算
hθ(x)=θ0x0+θ1x1+θ2x2+...+θnxn
- =[θ0x(1)0,θ0x(2)0,...,θ0x(m)0]+[θ1x(1)1,θ1x(2)1,...,θ1x(m)1]+...+[θnx(1)n,θnx(2)n,...,θnx(m)n]
- =[θ0x(1)0+θ1x(1)1+...+θnx(1)n, θ0x(2)0+θ1x(2)1+...+θnx(2)n, θ0x(m)0+θ1x(m)1+...+θnx(m)n]
- =θTx
其中,
x=|x0x1x2...xn|=|x(1)0x(2)0...x(m)0x(1)1x(2)1...x(m)1x(1)2x(2)2...x(m)2............x(1)nx(2)n...x(m)n|,θ=|θ0θ1θ2...θn|
- m为训练数据组数,n为特征个数(通常,为了方便处理,会令x(i)0=1,i=1,2,...,m)。
数据归一化:Feature Scaling & Standard Normalization
xi:=xi−μisi
其中,μi是第i个特征数据x_i的均值,而 si则要视情况而定:
- Feature Scaling:si为xi中最大值与最小值的差(max-min);
- Standard Normalization:si为xi中数据标准差(standard deviation)。
特别注意,通过 Feature scaling训练出模型后,在进行预测时,同样需要对输入特征数据进行归一化。
Normal Equation标准工程
θ=(XTX)−1XTy
Week3 - Logistic Regression & Overfitting
Logistic Regression
Sigmoid Function - S函数
hθ(x)=g(θTx)
z=θTx
g(z)=11+e−z
Cost Function
J(θ)=−1mm∑i=1[y(i)∗loghθ(x(i))+(1−y(i))∗log(1−hθ(x(i)))]
向量化形式:
J(θ)=1m(−yTlog(h)−(1−y)Tlog(1−h))
Gradient Descent
J(θ)=−1mm∑i=1[y(i)∗loghθ(x(i))+(1−y(i))∗log(1−hθ(x(i)))]
θj:=θj−α∂∂θjJ(θ)
- =θj−αmm∑i=1((hθ(x(i))−y(i))x(i)j)
∂∂θjJ(θ)=∂∂θj{−1mm∑i=1[y(i)∗loghθ(x(i))+(1−y(i))∗log(1−hθ(x(i)))]}
- =−1mm∑i=1∂∂θj[y(i)∗loghθ(x(i))+(1−y(i))∗log(1−hθ(x(i)))]
- 其中,
- ∂∂θj[y(i)∗loghθ(x(i))]=y(i)∗∂∂θj[loghθ(x(i))]=y(i)∗1hθ(x(i))∗ln(2)∗∂∂θjhθ(x(i))
- ∂∂θj[(1−y(i))∗log(1−hθ(x(i)))]=(1−y(i))∗∂∂θj[log(1−hθ(x(i)))]=(1−y(i))∗1(1−hθ(x(i)))∗ln(2)∗∂∂θj(1−hθ(x(i)))
- 而∂∂θjhθ(x(i))=g′(z)∗z′(θTx(i))=(11+e−z)′∗z′(θTx(i))
- =((1+e−z)−1)′∗z′(θTx(i))
- =e−z(1+e−z)2∗z′(θTx(i))
- =e−z(1+e−z)2∗∂∂θj(θTx(i))
- =e−z(1+e−z)2∗∂∂θj(θ0∗x(i)0+θ1∗x(i)1+θ2∗x(i)2+...+θj∗x(i)j+...+θn∗x(i)n)
- =e−z(1+e−z)2∗x(i)j
- 而∂∂θjhθ(x(i))=g′(z)∗z′(θTx(i))=(11+e−z)′∗z′(θTx(i))
向量化形式:
θ=θ−αmXT(g(Xθ)−→y)
解决Overfitting
针对 hypothesis function,引入 Regularation parameter(λ)到 Cost function中:
J(θ)=12mm∑i=1(hθ(x(i))−y(i))2+λn∑j=1θ2j