“ML”的版本间的差异
来自个人维基
小 (→Gradient Descent) |
小 (→Gradient Descent) |
||
第91行: | 第91行: | ||
:::<math>=-\frac{1}{m}\sum_{i=1}^m\frac{∂}{∂θ_j}[y^{(i)}*logh_θ(x^{(i)})+(1-y^{(i)})*log(1-h_θ(x^{(i)}))]</math> | :::<math>=-\frac{1}{m}\sum_{i=1}^m\frac{∂}{∂θ_j}[y^{(i)}*logh_θ(x^{(i)})+(1-y^{(i)})*log(1-h_θ(x^{(i)}))]</math> | ||
:::其中, | :::其中, | ||
− | ::::<math>\frac{∂}{∂θ_j}[y^{(i)}*logh_θ(x^{(i)})] = y^{(i)}*\frac{∂}{∂θ_j}[logh_θ(x^{(i)})] = y^{(i)} | + | ::::<math>\frac{∂}{∂θ_j}[y^{(i)}*logh_θ(x^{(i)})] = y^{(i)}*\frac{∂}{∂θ_j}[logh_θ(x^{(i)})] = \frac{y^{(i)}}{h_θ(x^{(i)})*ln(2)}*\frac{∂}{∂θ_j}h_θ(x^{(i)})</math> |
− | ::::<math>\frac{∂}{∂θ_j}[(1-y^{(i)})*log(1-h_θ(x^{(i)}))] = (1-y^{(i)})*\frac{∂}{∂θ_j}[log(1-h_θ(x^{(i)}))] = (1-y^{(i)}) | + | ::::<math>\frac{∂}{∂θ_j}[(1-y^{(i)})*log(1-h_θ(x^{(i)}))] = (1-y^{(i)})*\frac{∂}{∂θ_j}[log(1-h_θ(x^{(i)}))] = \frac{(1-y^{(i)})}{(1-h_θ(x^{(i)}))*ln(2)}*\frac{∂}{∂θ_j}(1-h_θ(x^{(i)}))</math> |
:::由于<math> \frac{∂}{∂θ_j}(1-h_θ(x^{(i)})) = -\frac{∂}{∂θ_j}h_θ(x^{(i)})</math>,故有: | :::由于<math> \frac{∂}{∂θ_j}(1-h_θ(x^{(i)})) = -\frac{∂}{∂θ_j}h_θ(x^{(i)})</math>,故有: | ||
+ | ::::<math>\frac{∂}{∂θ_j}[y^{(i)}*logh_θ(x^{(i)})+(1-y^{(i)})*log(1-h_θ(x^{(i)}))] = \frac{y^{(i)}}{h_θ(x^{(i)})*ln(2)}*\frac{∂}{∂θ_j}h_θ(x^{(i)}) + \frac{(1-y^{(i)})}{(1-h_θ(x^{(i)}))*ln(2)}*\frac{∂}{∂θ_j}(1-h_θ(x^{(i)}))</math> | ||
+ | :::::::::::::::::::::<math> = \frac{y^{(i)}}{h_θ(x^{(i)})*ln(2)}*\frac{∂}{∂θ_j}h_θ(x^{(i)}) - \frac{(1-y^{(i)})}{(1-h_θ(x^{(i)}))*ln(2)}*\frac{∂}{∂θ_j}h_θ(x^{(i)})</math> | ||
+ | :::::::::::::::::::::<math> = (\frac{y^{(i)}}{h_θ(x^{(i)})*ln(2)}- \frac{(1-y^{(i)})}{(1-h_θ(x^{(i)}))*ln(2)})*\frac{∂}{∂θ_j}h_θ(x^{(i)})</math> | ||
+ | |||
::::而<math> \frac{∂}{∂θ_j}h_θ(x^{(i)}) = g'(z)*z'(θ^Tx^{(i)}) = (\frac{1}{1+e^{-z}})'*z'(θ^Tx^{(i)})</math> | ::::而<math> \frac{∂}{∂θ_j}h_θ(x^{(i)}) = g'(z)*z'(θ^Tx^{(i)}) = (\frac{1}{1+e^{-z}})'*z'(θ^Tx^{(i)})</math> |
2018年12月25日 (二) 17:45的版本
目录[隐藏] |
定义
- 约定:
- x(i)j:训练数据中的第i列中的第j个特征值 value of feature j in the ith training example
- x(i):训练数据中第i列 the input (features) of the ith training example
- m:训练数据集条数 the number of training examples
- n:特征数量 the number of features
Week1 - 机器学习基本概念
Cost Function损失函数
Squared error function/Mean squared function均方误差:
Cross entropy交叉熵:
Gradient Descent梯度下降
对于线性回归模型,其损失函数为均方误差,故有:
对于j>=1:
Week2 - Multivariate Linear Regression
Multivariate Linear Regression模型的计算
其中,
- m为训练数据组数,n为特征个数(通常,为了方便处理,会令。
数据归一化:Feature Scaling & Standard Normalization
其中,是第i个特征数据x_i的均值,而 则要视情况而定:
- Feature Scaling:为中最大值与最小值的差(max-min);
- Standard Normalization:为中数据标准差(standard deviation)。
特别注意,通过 Feature scaling训练出模型后,在进行预测时,同样需要对输入特征数据进行归一化。
Normal Equation标准工程
Week3 - Logistic Regression & Overfitting
Logistic Regression
Sigmoid Function - S函数
Cost Function
向量化形式:
Gradient Descent
- 其中,
- 由于,故有:
-
- 而
- 而
向量化形式:
解决Overfitting
针对 hypothesis function,引入 Regularation parameter()到 Cost function中: