“ML”的版本间的差异
小 (→Week3 - Logistic Regression) |
小 (→Week4 - Neural networks神经网络) |
||
(未显示1个用户的23个中间版本) | |||
第6行: | 第6行: | ||
::<math>n</math>:特征数量 the number of features | ::<math>n</math>:特征数量 the number of features | ||
− | =Week1= | + | =Week1 - 机器学习基本概念= |
==Cost Function损失函数== | ==Cost Function损失函数== | ||
Squared error function/Mean squared function均方误差: <math>J(θ)=\frac{1}{2m}\sum_{i=1}^m(h_θ(x^{(i)})-y^{(i)})^2</math> | Squared error function/Mean squared function均方误差: <math>J(θ)=\frac{1}{2m}\sum_{i=1}^m(h_θ(x^{(i)})-y^{(i)})^2</math> | ||
第12行: | 第12行: | ||
==Gradient Descent梯度下降== | ==Gradient Descent梯度下降== | ||
− | <math>θ_j:=θ_j | + | <math>θ_j:=θ_j-α\frac{∂}{∂θ_j}J(θ)</math> |
对于'''线性回归模型''',其损失函数为均方误差,故有: | 对于'''线性回归模型''',其损失函数为均方误差,故有: | ||
<math>\frac{∂}{∂θ_j}J(θ)= \frac{∂}{∂θ_j}(\frac{1}{2m}\sum_{i=1}^m(h_θ(x^{(i)})-y^{(i)})^2)</math> | <math>\frac{∂}{∂θ_j}J(θ)= \frac{∂}{∂θ_j}(\frac{1}{2m}\sum_{i=1}^m(h_θ(x^{(i)})-y^{(i)})^2)</math> | ||
第24行: | 第24行: | ||
:<math>= \frac{1}{m} (h_θ(x)-y) x_{j} </math> | :<math>= \frac{1}{m} (h_θ(x)-y) x_{j} </math> | ||
− | =Week2= | + | =Week2 - Multivariate Linear Regression= |
− | ==Multivariate Linear | + | ==Multivariate Linear Regression模型的计算== |
<math>h_θ(x) = θ_0x_0 + θ_1x_1 + θ_2x_2 + ... + θ_nx_n</math> | <math>h_θ(x) = θ_0x_0 + θ_1x_1 + θ_2x_2 + ... + θ_nx_n</math> | ||
::<math> = [θ_0x_0^{(1)}, θ_0x_0^{(2)}, ..., θ_0x_0^{(m)}] + [θ_1x_1^{(1)}, θ_1x_1^{(2)}, ..., θ_1x_1^{(m)}] + ... + [θ_nx_n^{(1)}, θ_nx_n^{(2)}, ..., θ_nx_n^{(m)}] </math> | ::<math> = [θ_0x_0^{(1)}, θ_0x_0^{(2)}, ..., θ_0x_0^{(m)}] + [θ_1x_1^{(1)}, θ_1x_1^{(2)}, ..., θ_1x_1^{(m)}] + ... + [θ_nx_n^{(1)}, θ_nx_n^{(2)}, ..., θ_nx_n^{(m)}] </math> | ||
第57行: | 第57行: | ||
:m为训练数据组数,n为特征个数(通常,为了方便处理,会令<math>x_0^{(i)}=1, i=1,2,...,m)</math>。 | :m为训练数据组数,n为特征个数(通常,为了方便处理,会令<math>x_0^{(i)}=1, i=1,2,...,m)</math>。 | ||
− | == | + | ==数据归一化:Feature Scaling & Standard Normalization== |
<math> | <math> | ||
x_i := \frac{x_i-μ_i}{s_i} | x_i := \frac{x_i-μ_i}{s_i} | ||
第69行: | 第69行: | ||
<math>θ = (X^TX)^{-1}X^Ty</math> | <math>θ = (X^TX)^{-1}X^Ty</math> | ||
− | =Week3 - Logistic Regression= | + | =Week3 - Logistic Regression & Overfitting= |
− | ==Sigmoid Function - S函数== | + | ==Logistic Regression== |
+ | ===Sigmoid Function - S函数=== | ||
<math>h_θ(x)=g(θ^Tx)</math> | <math>h_θ(x)=g(θ^Tx)</math> | ||
<math>z = θ^Tx</math> | <math>z = θ^Tx</math> | ||
<math>g(z) = \frac{1}{1+e^{-z}}</math> | <math>g(z) = \frac{1}{1+e^{-z}}</math> | ||
− | ==Cost Function== | + | ===Cost Function=== |
<math>J(θ)=-\frac{1}{m}\sum_{i=1}^m[y^{(i)}*logh_θ(x^{(i)})+(1-y^{(i)})*log(1-h_θ(x^{(i)}))]</math> | <math>J(θ)=-\frac{1}{m}\sum_{i=1}^m[y^{(i)}*logh_θ(x^{(i)})+(1-y^{(i)})*log(1-h_θ(x^{(i)}))]</math> | ||
向量化形式: | 向量化形式: | ||
第82行: | 第83行: | ||
</math> | </math> | ||
− | ==Gradient Descent== | + | ===Gradient Descent=== |
<math>θ_j:=θ_j-α\frac{∂}{∂θ_j}J(θ)</math> | <math>θ_j:=θ_j-α\frac{∂}{∂θ_j}J(θ)</math> | ||
:<math>= θ_j-\frac{α}{m}\sum_{i=1}^m( (h_θ(x^{(i)})-y^{(i)}) x_j^{(i)} ) </math> | :<math>= θ_j-\frac{α}{m}\sum_{i=1}^m( (h_θ(x^{(i)})-y^{(i)}) x_j^{(i)} ) </math> | ||
+ | |||
+ | 附推导过程如下: | ||
+ | :::<math>\frac{∂}{∂θ_j}J(θ) = \frac{∂}{∂θ_j}\{-\frac{1}{m}\sum_{i=1}^m[y^{(i)}*logh_θ(x^{(i)})+(1-y^{(i)})*log(1-h_θ(x^{(i)}))]\}</math> | ||
+ | ::::::<math>=-\frac{1}{m}\sum_{i=1}^m\frac{∂}{∂θ_j}[y^{(i)}*logh_θ(x^{(i)})+(1-y^{(i)})*log(1-h_θ(x^{(i)}))]</math> <math>------式1)</math> | ||
+ | :::其中, | ||
+ | ::::<math>\frac{∂}{∂θ_j}[y^{(i)}*logh_θ(x^{(i)})] = y^{(i)}*\frac{∂}{∂θ_j}[logh_θ(x^{(i)})] = \frac{y^{(i)}}{h_θ(x^{(i)})*ln(e)}*\frac{∂}{∂θ_j}h_θ(x^{(i)})</math> | ||
+ | ::::<math>\frac{∂}{∂θ_j}[(1-y^{(i)})*log(1-h_θ(x^{(i)}))] = (1-y^{(i)})*\frac{∂}{∂θ_j}[log(1-h_θ(x^{(i)}))] = \frac{(1-y^{(i)})}{(1-h_θ(x^{(i)}))*ln(e)}*\frac{∂}{∂θ_j}(1-h_θ(x^{(i)}))</math> | ||
+ | :::由于<math> \frac{∂}{∂θ_j}(1-h_θ(x^{(i)})) = -\frac{∂}{∂θ_j}h_θ(x^{(i)})</math>,故有: | ||
+ | ::::<math>\frac{∂}{∂θ_j}[y^{(i)}*logh_θ(x^{(i)})+(1-y^{(i)})*log(1-h_θ(x^{(i)}))] = \frac{y^{(i)}}{h_θ(x^{(i)})*ln(e)}*\frac{∂}{∂θ_j}h_θ(x^{(i)}) + \frac{(1-y^{(i)})}{(1-h_θ(x^{(i)}))*ln(e)}*\frac{∂}{∂θ_j}(1-h_θ(x^{(i)}))</math> | ||
+ | :::::::::::::::::::::<math> = \frac{y^{(i)}}{h_θ(x^{(i)})*ln(e)}*\frac{∂}{∂θ_j}h_θ(x^{(i)}) - \frac{(1-y^{(i)})}{(1-h_θ(x^{(i)}))*ln(e)}*\frac{∂}{∂θ_j}h_θ(x^{(i)})</math> | ||
+ | :::::::::::::::::::::<math> = (\frac{y^{(i)}}{h_θ(x^{(i)})*ln(e)}- \frac{(1-y^{(i)})}{(1-h_θ(x^{(i)}))*ln(e)})*\frac{∂}{∂θ_j}h_θ(x^{(i)}) </math> | ||
+ | :::::::::::::::::::::<math> = \frac{y^{(i)}-h_θ(x^{(i)})}{h_θ(x^{(i)})*(1-h_θ(x^{(i)}))*ln(e)}*\frac{∂}{∂θ_j}h_θ(x^{(i)}) </math> //将 <math>h_θ(x^{(i)})=g(z)=\frac{1}{1+e^{-z}}</math>代入 | ||
+ | :::::::::::::::::::::<math> = \frac{y^{(i)}*(1+e^{-z})^2-(1+e^{-z})}{e^{-z}*ln(e)} * \frac{∂}{∂θ_j}h_θ(x^{(i)}) </math> | ||
+ | :::::::::::::::::::::<math> = \frac{y^{(i)}*(1+e^{-z})^2-(1+e^{-z})}{e^{-z}} * \frac{∂}{∂θ_j}h_θ(x^{(i)}) </math> <math>------式2)</math> | ||
+ | |||
+ | |||
+ | ::::而<math> \frac{∂}{∂θ_j}h_θ(x^{(i)}) = g'(z)*z'(θ^Tx^{(i)}) = (\frac{1}{1+e^{-z}})'*z'(θ^Tx^{(i)})</math> | ||
+ | :::::::::<math> = ((1+e^{-z})^{-1})'*z'(θ^Tx^{(i)})</math> | ||
+ | :::::::::<math> = \frac{e^{-z}}{(1+e^{-z})^{2}}*z'(θ^Tx^{(i)})</math> | ||
+ | :::::::::<math> = \frac{e^{-z}}{(1+e^{-z})^{2}}*\frac{∂}{∂θ_j}(θ^Tx^{(i)})</math> | ||
+ | :::::::::<math> = \frac{e^{-z}}{(1+e^{-z})^{2}}*\frac{∂}{∂θ_j}(θ_0*x_0^{(i)} + θ_1*x_1^{(i)} + θ_2*x_2^{(i)} +...+ θ_j*x_j^{(i)} +...+ θ_n*x_n^{(i)} )</math> | ||
+ | :::::::::<math> = \frac{e^{-z}}{(1+e^{-z})^{2}}*x_j^{(i)}</math> <math>------式3)</math> | ||
+ | ::::将式3)代入式2): | ||
+ | :::::::::<math>\frac{∂}{∂θ_j}[y^{(i)}*logh_θ(x^{(i)})+(1-y^{(i)})*log(1-h_θ(x^{(i)}))] = (y^{(i)} - \frac{1}{1+e^{-z}})*x_j^{(i)}</math> | ||
+ | ::::::::::::::::::::::::::<math> = (y^{(i)} - h_θ(x^{(i)}))*x_j^{(i)}</math> <math>------式4)</math> | ||
+ | ::::将式4)代入式1): | ||
+ | :::::::::<math>θ_j:= θ_j-\frac{α}{m}\sum_{i=1}^m( (h_θ(x^{(i)})-y^{(i)}) x_j^{(i)} ) </math> | ||
+ | |||
+ | |||
+ | |||
+ | 向量化形式: | ||
+ | <math> | ||
+ | θ = θ - \frac{α}{m}X^T(g(Xθ) - \vec y) | ||
+ | </math> | ||
+ | |||
+ | ==解决Overfitting== | ||
+ | 针对 hypothesis function,引入 '''Regularation parameter'''(<math>λ</math>)到 Cost function中: | ||
+ | <math>J(θ)=\frac{1}{2m}\sum_{i=1}^m(h_θ(x^{(i)})-y^{(i)})^2 + λ\sum_{j=1}^nθ_j^2</math> | ||
+ | |||
+ | =Week4 - Neural networks神经网络= | ||
+ | [[文件:Neural_netorwk.png|400px]] | ||
+ | :对于上述神经网络,其各个layer可如下计算: | ||
+ | ::<math>a_1^{(2)} = g( θ_{10}^{(1)}x_0 + θ_{11}^{(1)}x_1 + θ_{12}^{(1)}x_2 + θ_{13}^{(1)}x_3 )</math> | ||
+ | ::<math>a_2^{(2)} = g( θ_{20}^{(1)}x_0 + θ_{21}^{(1)}x_1 + θ_{22}^{(1)}x_2 + θ_{23}^{(1)}x_3 )</math> | ||
+ | ::<math>a_3^{(2)} = g( θ_{30}^{(1)}x_0 + θ_{31}^{(1)}x_1 + θ_{32}^{(1)}x_2 + θ_{33}^{(1)}x_3 )</math> | ||
+ | ::<math>h_θ(x) = a_1^{(3)} = g( θ_{10}^{(2)}a_0^{(2)} + θ_{11}^{(2)}a_1^{(2)} + θ_{12}^{(2)}a_2^{(2)} + θ_{13}^{(2)}a_3^{(2)} )</math> | ||
+ | *一个神经网络,如果其在<math>j</math>层有<math>s_j</math>个神经元,在<math>j+1</math>层有<math>s_{j+1}</math>个神经元,则<math>θ_j</math>将是 <math>s_{j+1} * (s_j+1) 的矩阵。 |
2019年1月2日 (三) 21:20的最后版本
目录 |
定义
- 约定:
- [math]x_j^{(i)}[/math]:训练数据中的第i列中的第j个特征值 value of feature j in the ith training example
- [math]x^{(i)}[/math]:训练数据中第i列 the input (features) of the ith training example
- [math]m[/math]:训练数据集条数 the number of training examples
- [math]n[/math]:特征数量 the number of features
Week1 - 机器学习基本概念
Cost Function损失函数
Squared error function/Mean squared function均方误差: [math]J(θ)=\frac{1}{2m}\sum_{i=1}^m(h_θ(x^{(i)})-y^{(i)})^2[/math]
Cross entropy交叉熵: [math]J(θ)=-\frac{1}{m}\sum_{i=1}^m[y^{(i)}*logh_θ(x^{(i)})+(1-y^{(i)})*log(1-h_θ(x^{(i)}))][/math]
Gradient Descent梯度下降
[math]θ_j:=θ_j-α\frac{∂}{∂θ_j}J(θ)[/math]
对于线性回归模型,其损失函数为均方误差,故有:
[math]\frac{∂}{∂θ_j}J(θ)= \frac{∂}{∂θ_j}(\frac{1}{2m}\sum_{i=1}^m(h_θ(x^{(i)})-y^{(i)})^2)[/math]
- [math]= \frac{1}{2m}\frac{∂}{∂θ_j}(\sum_{i=1}^m(h_θ(x^{(i)})-y^{(i)})^2)[/math]
- [math]= \frac{1}{2m}\sum_{i=1}^m( \frac{∂}{∂θ_j}(h_θ(x^{(i)})-y^{(i)})^2 )[/math]
- [math]= \frac{1}{m}\sum_{i=1}^m( (h_θ(x^{(i)})-y^{(i)}) \frac{∂}{∂θ_j}h_θ(x^{(i)}) ) //链式求导法式[/math]
- [math]= \frac{1}{m}\sum_{i=1}^m( (h_θ(x^{(i)})-y^{(i)}) \frac{∂}{∂θ_j}x^{(i)}θ ) [/math]
- [math]= \frac{1}{m}\sum_{i=1}^m( (h_θ(x^{(i)})-y^{(i)}) \frac{∂}{∂θ_j}\sum_{k=0}^{n}x_k^{(i)}θ_k ) [/math]
对于j>=1:
- [math]= \frac{1}{m}\sum_{i=1}^m( (h_θ(x^{(i)})-y^{(i)}) x_j^{(i)} ) [/math]
- [math]= \frac{1}{m} (h_θ(x)-y) x_{j} [/math]
Week2 - Multivariate Linear Regression
Multivariate Linear Regression模型的计算
[math]h_θ(x) = θ_0x_0 + θ_1x_1 + θ_2x_2 + ... + θ_nx_n[/math]
- [math] = [θ_0x_0^{(1)}, θ_0x_0^{(2)}, ..., θ_0x_0^{(m)}] + [θ_1x_1^{(1)}, θ_1x_1^{(2)}, ..., θ_1x_1^{(m)}] + ... + [θ_nx_n^{(1)}, θ_nx_n^{(2)}, ..., θ_nx_n^{(m)}] [/math]
- [math] = [θ_0x_0^{(1)}+θ_1x_1^{(1)}+...+θ_nx_n^{(1)}, \ \ \ θ_0x_0^{(2)}+θ_1x_1^{(2)}+...+θ_nx_n^{(2)}, \ \ \ θ_0x_0^{(m)}+θ_1x_1^{(m)}+...+θ_nx_n^{(m)}] [/math]
- [math] = θ^Tx[/math]
其中,
[math]
x=\begin{vmatrix}
x_0 \\
x_1 \\
x_2 \\
... \\
x_n
\end{vmatrix}
= \begin{vmatrix}
x_0^{(1)} & x_0^{(2)} & ... & x_0^{(m)} \\
x_1^{(1)} & x_1^{(2)} & ... & x_1^{(m)} \\
x_2^{(1)} & x_2^{(2)} & ... & x_2^{(m)} \\
... & ... & ... & ...\\
x_n^{(1)} & x_n^{(2)} & ... & x_n^{(m)} \\
\end{vmatrix}
,
θ=\begin{vmatrix}
θ_0 \\
θ_1\\
θ_2\\
...\\
θ_n
\end{vmatrix}
[/math]
- m为训练数据组数,n为特征个数(通常,为了方便处理,会令[math]x_0^{(i)}=1, i=1,2,...,m)[/math]。
数据归一化:Feature Scaling & Standard Normalization
[math]
x_i := \frac{x_i-μ_i}{s_i}
[/math]
其中,[math]μ_i[/math]是第i个特征数据x_i的均值,而 [math]s_i[/math]则要视情况而定:
- Feature Scaling:[math]s_i[/math]为[math]x_i[/math]中最大值与最小值的差(max-min);
- Standard Normalization:[math]s_i[/math]为[math]x_i[/math]中数据标准差(standard deviation)。
特别注意,通过 Feature scaling训练出模型后,在进行预测时,同样需要对输入特征数据进行归一化。
Normal Equation标准工程
[math]θ = (X^TX)^{-1}X^Ty[/math]
Week3 - Logistic Regression & Overfitting
Logistic Regression
Sigmoid Function - S函数
[math]h_θ(x)=g(θ^Tx)[/math]
[math]z = θ^Tx[/math]
[math]g(z) = \frac{1}{1+e^{-z}}[/math]
Cost Function
[math]J(θ)=-\frac{1}{m}\sum_{i=1}^m[y^{(i)}*logh_θ(x^{(i)})+(1-y^{(i)})*log(1-h_θ(x^{(i)}))][/math]
向量化形式:
[math]
J(θ) = \frac{1}{m}( -y^Tlog(h) - (1-y)^Tlog(1-h) )
[/math]
Gradient Descent
[math]θ_j:=θ_j-α\frac{∂}{∂θ_j}J(θ)[/math]
- [math]= θ_j-\frac{α}{m}\sum_{i=1}^m( (h_θ(x^{(i)})-y^{(i)}) x_j^{(i)} ) [/math]
附推导过程如下:
- [math]\frac{∂}{∂θ_j}J(θ) = \frac{∂}{∂θ_j}\{-\frac{1}{m}\sum_{i=1}^m[y^{(i)}*logh_θ(x^{(i)})+(1-y^{(i)})*log(1-h_θ(x^{(i)}))]\}[/math]
- [math]=-\frac{1}{m}\sum_{i=1}^m\frac{∂}{∂θ_j}[y^{(i)}*logh_θ(x^{(i)})+(1-y^{(i)})*log(1-h_θ(x^{(i)}))][/math] [math]------式1)[/math]
- 其中,
- [math]\frac{∂}{∂θ_j}[y^{(i)}*logh_θ(x^{(i)})] = y^{(i)}*\frac{∂}{∂θ_j}[logh_θ(x^{(i)})] = \frac{y^{(i)}}{h_θ(x^{(i)})*ln(e)}*\frac{∂}{∂θ_j}h_θ(x^{(i)})[/math]
- [math]\frac{∂}{∂θ_j}[(1-y^{(i)})*log(1-h_θ(x^{(i)}))] = (1-y^{(i)})*\frac{∂}{∂θ_j}[log(1-h_θ(x^{(i)}))] = \frac{(1-y^{(i)})}{(1-h_θ(x^{(i)}))*ln(e)}*\frac{∂}{∂θ_j}(1-h_θ(x^{(i)}))[/math]
- 由于[math] \frac{∂}{∂θ_j}(1-h_θ(x^{(i)})) = -\frac{∂}{∂θ_j}h_θ(x^{(i)})[/math],故有:
- [math]\frac{∂}{∂θ_j}[y^{(i)}*logh_θ(x^{(i)})+(1-y^{(i)})*log(1-h_θ(x^{(i)}))] = \frac{y^{(i)}}{h_θ(x^{(i)})*ln(e)}*\frac{∂}{∂θ_j}h_θ(x^{(i)}) + \frac{(1-y^{(i)})}{(1-h_θ(x^{(i)}))*ln(e)}*\frac{∂}{∂θ_j}(1-h_θ(x^{(i)}))[/math]
- [math] = \frac{y^{(i)}}{h_θ(x^{(i)})*ln(e)}*\frac{∂}{∂θ_j}h_θ(x^{(i)}) - \frac{(1-y^{(i)})}{(1-h_θ(x^{(i)}))*ln(e)}*\frac{∂}{∂θ_j}h_θ(x^{(i)})[/math]
- [math] = (\frac{y^{(i)}}{h_θ(x^{(i)})*ln(e)}- \frac{(1-y^{(i)})}{(1-h_θ(x^{(i)}))*ln(e)})*\frac{∂}{∂θ_j}h_θ(x^{(i)}) [/math]
- [math] = \frac{y^{(i)}-h_θ(x^{(i)})}{h_θ(x^{(i)})*(1-h_θ(x^{(i)}))*ln(e)}*\frac{∂}{∂θ_j}h_θ(x^{(i)}) [/math] //将 [math]h_θ(x^{(i)})=g(z)=\frac{1}{1+e^{-z}}[/math]代入
- [math] = \frac{y^{(i)}*(1+e^{-z})^2-(1+e^{-z})}{e^{-z}*ln(e)} * \frac{∂}{∂θ_j}h_θ(x^{(i)}) [/math]
- [math] = \frac{y^{(i)}*(1+e^{-z})^2-(1+e^{-z})}{e^{-z}} * \frac{∂}{∂θ_j}h_θ(x^{(i)}) [/math] [math]------式2)[/math]
- [math]\frac{∂}{∂θ_j}[y^{(i)}*logh_θ(x^{(i)})+(1-y^{(i)})*log(1-h_θ(x^{(i)}))] = \frac{y^{(i)}}{h_θ(x^{(i)})*ln(e)}*\frac{∂}{∂θ_j}h_θ(x^{(i)}) + \frac{(1-y^{(i)})}{(1-h_θ(x^{(i)}))*ln(e)}*\frac{∂}{∂θ_j}(1-h_θ(x^{(i)}))[/math]
- [math]\frac{∂}{∂θ_j}J(θ) = \frac{∂}{∂θ_j}\{-\frac{1}{m}\sum_{i=1}^m[y^{(i)}*logh_θ(x^{(i)})+(1-y^{(i)})*log(1-h_θ(x^{(i)}))]\}[/math]
- 而[math] \frac{∂}{∂θ_j}h_θ(x^{(i)}) = g'(z)*z'(θ^Tx^{(i)}) = (\frac{1}{1+e^{-z}})'*z'(θ^Tx^{(i)})[/math]
- [math] = ((1+e^{-z})^{-1})'*z'(θ^Tx^{(i)})[/math]
- [math] = \frac{e^{-z}}{(1+e^{-z})^{2}}*z'(θ^Tx^{(i)})[/math]
- [math] = \frac{e^{-z}}{(1+e^{-z})^{2}}*\frac{∂}{∂θ_j}(θ^Tx^{(i)})[/math]
- [math] = \frac{e^{-z}}{(1+e^{-z})^{2}}*\frac{∂}{∂θ_j}(θ_0*x_0^{(i)} + θ_1*x_1^{(i)} + θ_2*x_2^{(i)} +...+ θ_j*x_j^{(i)} +...+ θ_n*x_n^{(i)} )[/math]
- [math] = \frac{e^{-z}}{(1+e^{-z})^{2}}*x_j^{(i)}[/math] [math]------式3)[/math]
- 将式3)代入式2):
- [math]\frac{∂}{∂θ_j}[y^{(i)}*logh_θ(x^{(i)})+(1-y^{(i)})*log(1-h_θ(x^{(i)}))] = (y^{(i)} - \frac{1}{1+e^{-z}})*x_j^{(i)}[/math]
- [math] = (y^{(i)} - h_θ(x^{(i)}))*x_j^{(i)}[/math] [math]------式4)[/math]
- [math]\frac{∂}{∂θ_j}[y^{(i)}*logh_θ(x^{(i)})+(1-y^{(i)})*log(1-h_θ(x^{(i)}))] = (y^{(i)} - \frac{1}{1+e^{-z}})*x_j^{(i)}[/math]
- 将式4)代入式1):
- [math]θ_j:= θ_j-\frac{α}{m}\sum_{i=1}^m( (h_θ(x^{(i)})-y^{(i)}) x_j^{(i)} ) [/math]
- 而[math] \frac{∂}{∂θ_j}h_θ(x^{(i)}) = g'(z)*z'(θ^Tx^{(i)}) = (\frac{1}{1+e^{-z}})'*z'(θ^Tx^{(i)})[/math]
向量化形式:
[math]
θ = θ - \frac{α}{m}X^T(g(Xθ) - \vec y)
[/math]
解决Overfitting
针对 hypothesis function,引入 Regularation parameter([math]λ[/math])到 Cost function中:
[math]J(θ)=\frac{1}{2m}\sum_{i=1}^m(h_θ(x^{(i)})-y^{(i)})^2 + λ\sum_{j=1}^nθ_j^2[/math]
Week4 - Neural networks神经网络
- 对于上述神经网络,其各个layer可如下计算:
- [math]a_1^{(2)} = g( θ_{10}^{(1)}x_0 + θ_{11}^{(1)}x_1 + θ_{12}^{(1)}x_2 + θ_{13}^{(1)}x_3 )[/math]
- [math]a_2^{(2)} = g( θ_{20}^{(1)}x_0 + θ_{21}^{(1)}x_1 + θ_{22}^{(1)}x_2 + θ_{23}^{(1)}x_3 )[/math]
- [math]a_3^{(2)} = g( θ_{30}^{(1)}x_0 + θ_{31}^{(1)}x_1 + θ_{32}^{(1)}x_2 + θ_{33}^{(1)}x_3 )[/math]
- [math]h_θ(x) = a_1^{(3)} = g( θ_{10}^{(2)}a_0^{(2)} + θ_{11}^{(2)}a_1^{(2)} + θ_{12}^{(2)}a_2^{(2)} + θ_{13}^{(2)}a_3^{(2)} )[/math]
- 一个神经网络,如果其在[math]j[/math]层有[math]s_j[/math]个神经元,在[math]j+1[/math]层有[math]s_{j+1}[/math]个神经元,则[math]θ_j[/math]将是 [math]s_{j+1} * (s_j+1) 的矩阵。[/math]