“ML”的版本间的差异
来自个人维基
小 |
|||
第4行: | 第4行: | ||
=Gradient Descent梯度下降= | =Gradient Descent梯度下降= | ||
− | |||
<math>θ_j:=θ_j+α\frac{∂}{∂θ_j}J(θ)</math> | <math>θ_j:=θ_j+α\frac{∂}{∂θ_j}J(θ)</math> | ||
+ | 对于线性模型,其损失函数为均方误差,故有: | ||
+ | <math>α\frac{∂}{∂θ_j}J(θ)= \frac{∂}{∂θ_j}(\frac{1}{2m}\sum_{i=1}^m(h_θ(x_i)-y_i)^2)</math> | ||
+ | :<math>= \frac{1}{2m}\frac{∂}{∂θ_j}(\sum_{i=1}^m(h_θ(x_i)-y_i)^2)</math> |
2018年12月21日 (五) 11:43的版本
Cost Function损失函数
Squared error function/Mean squared function均方误差: J(θ)=12mm∑i=1(hθ(xi)−yi)2
Cross entropy交叉熵: J(θ)=−1mm∑i=1[y(i)∗loghθ(x(i))+(1−y(i))∗log(1−hθ(x(i)))]
Gradient Descent梯度下降
θj:=θj+α∂∂θjJ(θ)
对于线性模型,其损失函数为均方误差,故有:
α∂∂θjJ(θ)=∂∂θj(12mm∑i=1(hθ(xi)−yi)2)
- =12m∂∂θj(m∑i=1(hθ(xi)−yi)2)