“ML”的版本间的差异
来自个人维基
小 (→Gradient Descent梯度下降) |
|||
第8行: | 第8行: | ||
<math>α\frac{∂}{∂θ_j}J(θ)= \frac{∂}{∂θ_j}(\frac{1}{2m}\sum_{i=1}^m(h_θ(x_i)-y_i)^2)</math> | <math>α\frac{∂}{∂θ_j}J(θ)= \frac{∂}{∂θ_j}(\frac{1}{2m}\sum_{i=1}^m(h_θ(x_i)-y_i)^2)</math> | ||
:<math>= \frac{1}{2m}\frac{∂}{∂θ_j}(\sum_{i=1}^m(h_θ(x_i)-y_i)^2)</math> | :<math>= \frac{1}{2m}\frac{∂}{∂θ_j}(\sum_{i=1}^m(h_θ(x_i)-y_i)^2)</math> | ||
+ | :<math>= \frac{1}{2m}\frac{∂}{∂θ_j} \sum_{i=1}^m(x_iθ-y_i)^2 </math> | ||
+ | :<math>= \frac{1}{m}\frac{∂}{∂θ_j} \sum_{i=1}^mx_{ij}θ_j </math> |
2018年12月21日 (五) 11:50的版本
Cost Function损失函数
Squared error function/Mean squared function均方误差: [math]J(θ)=\frac{1}{2m}\sum_{i=1}^m(h_θ(x_i)-y_i)^2[/math]
Cross entropy交叉熵: [math]J(θ)=-\frac{1}{m}\sum_{i=1}^m[y^{(i)}*logh_θ(x^{(i)})+(1-y^{(i)})*log(1-h_θ(x^{(i)}))][/math]
Gradient Descent梯度下降
[math]θ_j:=θ_j+α\frac{∂}{∂θ_j}J(θ)[/math]
对于线性模型,其损失函数为均方误差,故有:
[math]α\frac{∂}{∂θ_j}J(θ)= \frac{∂}{∂θ_j}(\frac{1}{2m}\sum_{i=1}^m(h_θ(x_i)-y_i)^2)[/math]
- [math]= \frac{1}{2m}\frac{∂}{∂θ_j}(\sum_{i=1}^m(h_θ(x_i)-y_i)^2)[/math]
- [math]= \frac{1}{2m}\frac{∂}{∂θ_j} \sum_{i=1}^m(x_iθ-y_i)^2 [/math]
- [math]= \frac{1}{m}\frac{∂}{∂θ_j} \sum_{i=1}^mx_{ij}θ_j [/math]