“ML”的版本间的差异

来自个人维基
跳转至: 导航搜索
Gradient Descent梯度下降
Gradient Descent梯度下降
第12行: 第12行:
 
:<math>= \frac{1}{m}\sum_{i=1}^m( (h_&theta;(x_i)-y_i) \frac{&part;}{&part;&theta;_j}h_&theta;(x_i) )  //链式求导法式</math>
 
:<math>= \frac{1}{m}\sum_{i=1}^m( (h_&theta;(x_i)-y_i) \frac{&part;}{&part;&theta;_j}h_&theta;(x_i) )  //链式求导法式</math>
 
:<math>= \frac{1}{m}\sum_{i=1}^m( (h_&theta;(x_i)-y_i) \frac{&part;}{&part;&theta;_j}x_i&theta; ) </math>
 
:<math>= \frac{1}{m}\sum_{i=1}^m( (h_&theta;(x_i)-y_i) \frac{&part;}{&part;&theta;_j}x_i&theta; ) </math>
:<math>= \frac{1}{m}\sum_{i=1}^m( (h_&theta;(x_i)-y_i) \frac{&part;}{&part;&theta;_j}\sum_{k=0}^{n}x_{ik}&theta;_k ) </math>
+
:<math>= \frac{1}{m}\sum_{i=1}^m( (h_&theta;(x_i)-y_i) \frac{&part;}{&part;&theta;_j}\sum_{k=0}^{n}x_i^{(k)}&theta;_k ) </math>
 
对于j>=1:
 
对于j>=1:
:<math>= \frac{1}{m}\sum_{i=1}^m( (h_&theta;(x_i)-y_i) x_{ij} ) </math>
+
:<math>= \frac{1}{m}\sum_{i=1}^m( (h_&theta;(x_i)-y_i) x_i^{(j)} ) </math>
 
:<math>= \frac{1}{m} (h_&theta;(x)-y) x_{j}  </math>
 
:<math>= \frac{1}{m} (h_&theta;(x)-y) x_{j}  </math>
  

2018年12月21日 (五) 18:52的版本

目录

 [隐藏

Week1

Cost Function损失函数

Squared error function/Mean squared function均方误差:
Cross entropy交叉熵:

Gradient Descent梯度下降


对于线性模型,其损失函数为均方误差,故有(这里输入训练数据x为m*n矩阵, 线性参数为n*1,代表训练矩阵中的第i行,代表第i行第k列):

对于j>=1:

Week2

Multivariate Linear Regression

其中,

m为训练数据组数,n为特征个数(通常,为了方便处理,会令

Feature Scaling & Standard Normalization


其中,是第i个特征数据x_i的均值,而 则要视情况而定:

  • Feature Scaling:中最大值与最小值的差(max-min);
  • Standard Normalization:中数据标准差(standard deviation)。