“微积分笔记”的版本间的差异
来自个人维基
小 (→复利极限) |
小 (→指数函数和对数函数) |
||
第8行: | 第8行: | ||
#零没有对数。 | #零没有对数。 | ||
#在实数范围内,负数无对数; 在复数范围内,负数是有对数的。 | #在实数范围内,负数无对数; 在复数范围内,负数是有对数的。 | ||
+ | |||
===对数法则=== | ===对数法则=== | ||
...略 | ...略 | ||
第19行: | 第20行: | ||
===导数=== | ===导数=== | ||
<math>\frac{d}{dx}\log_{b}(x)=\frac{1} {xln(b)}</math> 和 <math>\frac{d}{dx}(b^x)=b^xln(b)</math> | <math>\frac{d}{dx}\log_{b}(x)=\frac{1} {xln(b)}</math> 和 <math>\frac{d}{dx}(b^x)=b^xln(b)</math> | ||
+ | |||
+ | ===指数增长/衰减方程=== | ||
+ | <math>P(t)=P_0e^kt</math>,k为增长/衰减常数,k>0时为增长方程,相应地,k<0为衰减方程。 |
2018年2月2日 (五) 18:29的版本
目录 |
三角函数
三角函数关键公式:[math]\lim_{x \to 0}\frac{\sin(x)}{x}=1[/math]
指数函数和对数函数
如果[math]N=a^x[/math],即a的x次方等于N(a>0,且a≠1),那么数x叫做以a为底N的对数(logarithm),记作[math]x=\log_{a}N[/math]。其中,a叫做对数的底数,N叫做真数,x叫做“以a为底N的对数”。
- 特别地,我们称以10为底的对数叫做常用对数(common logarithm),并记为lg。
- 称以无理数e(e=2.71828...)为底的对数称为自然对数(natural logarithm),并记为ln。
- 零没有对数。
- 在实数范围内,负数无对数; 在复数范围内,负数是有对数的。
对数法则
...略
[math]\log_{b}(x^y)=ylog_{b}(x)[/math]
[math]\log_b(x)=\frac{\log_c(x)}{\log_b(c)}[/math]
复利极限
令 [math]e = \lim_{h \to 0+}(1+h)^{1/h}[/math](e=2.718...),则:
- [math]\lim_{n \to \infty}(1+\frac{x}{n})^n=e^x[/math] 和 [math]\lim_{h \to 0}(1+xh)^{1/h}=e^x[/math]
导数
[math]\frac{d}{dx}\log_{b}(x)=\frac{1} {xln(b)}[/math] 和 [math]\frac{d}{dx}(b^x)=b^xln(b)[/math]
指数增长/衰减方程
[math]P(t)=P_0e^kt[/math],k为增长/衰减常数,k>0时为增长方程,相应地,k<0为衰减方程。