“微积分笔记”的版本间的差异

来自个人维基
跳转至: 导航搜索
函数
函数
第11行: 第11行:
 
余切:<math>cot(x)=\frac{1}{tan(x)}</math>
 
余切:<math>cot(x)=\frac{1}{tan(x)}</math>
 
[[文件:astc.png|200px]]
 
[[文件:astc.png|200px]]
毕达哥拉斯定理:
+
勾股定理(毕达哥拉斯定理):
 
<math>cos^2(x)+sin^2(x)=1</math>
 
<math>cos^2(x)+sin^2(x)=1</math>
 
“互余”:
 
“互余”:

2018年3月1日 (四) 10:54的版本

目录

函数

  • 反函数与原函数关于 y=x镜面对称

F-1x.png

  • 函数的复合

[math]f(x)=h(g(x))[/math]可表示为 [math]f=hOg[/math],即f是g与h的复合。

  • 有理函数

[math]f(x)=\frac{p(x)}{q(x)}[/math]

  • 三角函数

余割:[math]csc(x)=\frac{1}{sin(x)}[/math]
正割:[math]sec(x)=\frac{1}{cos(x)}[/math]
余切:[math]cot(x)=\frac{1}{tan(x)}[/math]
Astc.png
勾股定理(毕达哥拉斯定理):
[math]cos^2(x)+sin^2(x)=1[/math]
“互余”:
[math]三角函数(x)=co-三角函数(\frac{\pi}{2}-x), 如 sin(x)=cos(\frac{\pi}{2}-x), sec(x)=csc(\frac{\pi}{2}-x), tan(x)=cot(\frac{\pi}{2}-x)[/math]
其他公式:
[math] sin(A+B)=sin(A)cos(B)+cos(A)sin(B) cos(A+B)=cos(A)cos(B)-sin(A)sin(B) [/math]

三角函数

三角函数关键公式:[math]\lim_{x \to 0}\frac{\sin(x)}{x}=1[/math]

指数函数和对数函数

如果[math]N=a^x[/math],即a的x次方等于N(a>0,且a≠1),那么数x叫做以a为底N的对数(logarithm),记作[math]x=\log_{a}N[/math]。其中,a叫做对数的底数,N叫做真数,x叫做“以a为底N的对数”。

  1. 特别地,我们称以10为底的对数叫做常用对数(common logarithm),并记为lg。
  2. 称以无理数e(e=2.71828...)为底的对数称为自然对数(natural logarithm),并记为ln。
  3. 零没有对数。
  4. 在实数范围内,负数无对数; 在复数范围内,负数是有对数的。

对数法则

...略
[math]\log_{b}(x^y)=ylog_{b}(x)[/math]
[math]\log_b(x)=\frac{\log_c(x)}{\log_b(c)}[/math]

复利极限

[math]e = \lim_{h \to 0+}(1+h)^{1/h}[/math](e=2.718...),则:

[math]\lim_{n \to \infty}(1+\frac{x}{n})^n=e^x[/math][math]\lim_{h \to 0}(1+xh)^{1/h}=e^x[/math]

导数

[math]\frac{d}{dx}\log_{b}(x)=\frac{1} {xln(b)}[/math][math]\frac{d}{dx}(b^x)=b^xln(b)[/math]

指数增长/衰减方程

[math]P(t)=P_0e^kt[/math],k为增长/衰减常数,k>0时为增长方程,相应地,k<0为衰减方程。

双曲函数

定义:

[math]cosh(x)=\frac{e^x+e^{-x}} {2}, sinh(x)=\frac{e^x-e^{-x}} {2}[/math]

有:

[math]cosh^2(x)-sinh^2(x)=1[/math]
[math]\frac{d}{dx}sinh(x)=cosh(x)[/math]
[math]\frac{d}{dx}cosh(x)=sinh(x)[/math]

曲线:
Sinh cosh.png