“ML”的版本间的差异
来自个人维基
小 (→Gradient Descent梯度下降) |
(→Gradient Descent梯度下降) |
||
第5行: | 第5行: | ||
=Gradient Descent梯度下降= | =Gradient Descent梯度下降= | ||
<math>θ_j:=θ_j+α\frac{∂}{∂θ_j}J(θ)</math> | <math>θ_j:=θ_j+α\frac{∂}{∂θ_j}J(θ)</math> | ||
− | 对于线性模型,其损失函数为均方误差,故有(这里输入训练数据x为m*n矩阵, 线性参数<math>θ</math>为n* | + | 对于线性模型,其损失函数为均方误差,故有(这里输入训练数据x为m*n矩阵, 线性参数<math>θ</math>为n*1,<math>x_i</math>代表训练矩阵中的第i行,<math>x_{ik}</math>代表第i行第k列): |
<math>\frac{∂}{∂θ_j}J(θ)= \frac{∂}{∂θ_j}(\frac{1}{2m}\sum_{i=1}^m(h_θ(x_i)-y_i)^2)</math> | <math>\frac{∂}{∂θ_j}J(θ)= \frac{∂}{∂θ_j}(\frac{1}{2m}\sum_{i=1}^m(h_θ(x_i)-y_i)^2)</math> | ||
:<math>= \frac{1}{2m}\frac{∂}{∂θ_j}(\sum_{i=1}^m(h_θ(x_i)-y_i)^2)</math> | :<math>= \frac{1}{2m}\frac{∂}{∂θ_j}(\sum_{i=1}^m(h_θ(x_i)-y_i)^2)</math> |
2018年12月21日 (五) 12:37的版本
Cost Function损失函数
Squared error function/Mean squared function均方误差: [math]J(θ)=\frac{1}{2m}\sum_{i=1}^m(h_θ(x_i)-y_i)^2[/math]
Cross entropy交叉熵: [math]J(θ)=-\frac{1}{m}\sum_{i=1}^m[y^{(i)}*logh_θ(x^{(i)})+(1-y^{(i)})*log(1-h_θ(x^{(i)}))][/math]
Gradient Descent梯度下降
[math]θ_j:=θ_j+α\frac{∂}{∂θ_j}J(θ)[/math]
对于线性模型,其损失函数为均方误差,故有(这里输入训练数据x为m*n矩阵, 线性参数[math]θ[/math]为n*1,[math]x_i[/math]代表训练矩阵中的第i行,[math]x_{ik}[/math]代表第i行第k列):
[math]\frac{∂}{∂θ_j}J(θ)= \frac{∂}{∂θ_j}(\frac{1}{2m}\sum_{i=1}^m(h_θ(x_i)-y_i)^2)[/math]
- [math]= \frac{1}{2m}\frac{∂}{∂θ_j}(\sum_{i=1}^m(h_θ(x_i)-y_i)^2)[/math]
- [math]= \frac{1}{2m}\sum_{i=1}^m( \frac{∂}{∂θ_j}(h_θ(x_i)-y_i)^2 )[/math]
- [math]= \frac{1}{m}\sum_{i=1}^m( (h_θ(x_i)-y_i) \frac{∂}{∂θ_j}h_θ(x_i) ) //链式求导法式[/math]
- [math]= \frac{1}{m}\sum_{i=1}^m( (h_θ(x_i)-y_i) \frac{∂}{∂θ_j}x_iθ ) [/math]
- [math]= \frac{1}{m}\sum_{i=1}^m( (h_θ(x_i)-y_i) \frac{∂}{∂θ_j}\sum_{k=0}^{n-1}x_{ik}θ_k ) [/math]
对于j>=1:
- [math]= \frac{1}{m}\sum_{i=1}^m( (h_θ(x_i)-y_i) x_{ij} ) [/math]
- [math]= \frac{1}{m} (h_θ(x)-y) x_{j} [/math]