“ML”的版本间的差异
来自个人维基
(→Gradient Descent梯度下降) |
小 |
||
第1行: | 第1行: | ||
− | =Cost Function损失函数= | + | =Week1= |
+ | ==Cost Function损失函数== | ||
Squared error function/Mean squared function均方误差: <math>J(θ)=\frac{1}{2m}\sum_{i=1}^m(h_θ(x_i)-y_i)^2</math> | Squared error function/Mean squared function均方误差: <math>J(θ)=\frac{1}{2m}\sum_{i=1}^m(h_θ(x_i)-y_i)^2</math> | ||
Cross entropy交叉熵: <math>J(θ)=-\frac{1}{m}\sum_{i=1}^m[y^{(i)}*logh_θ(x^{(i)})+(1-y^{(i)})*log(1-h_θ(x^{(i)}))]</math> | Cross entropy交叉熵: <math>J(θ)=-\frac{1}{m}\sum_{i=1}^m[y^{(i)}*logh_θ(x^{(i)})+(1-y^{(i)})*log(1-h_θ(x^{(i)}))]</math> | ||
− | =Gradient Descent梯度下降= | + | ==Gradient Descent梯度下降== |
<math>θ_j:=θ_j+α\frac{∂}{∂θ_j}J(θ)</math> | <math>θ_j:=θ_j+α\frac{∂}{∂θ_j}J(θ)</math> | ||
对于线性模型,其损失函数为均方误差,故有(这里输入训练数据x为m*n矩阵, 线性参数<math>θ</math>为n*1,<math>x_i</math>代表训练矩阵中的第i行,<math>x_{ik}</math>代表第i行第k列): | 对于线性模型,其损失函数为均方误差,故有(这里输入训练数据x为m*n矩阵, 线性参数<math>θ</math>为n*1,<math>x_i</math>代表训练矩阵中的第i行,<math>x_{ik}</math>代表第i行第k列): | ||
第15行: | 第16行: | ||
:<math>= \frac{1}{m}\sum_{i=1}^m( (h_θ(x_i)-y_i) x_{ij} ) </math> | :<math>= \frac{1}{m}\sum_{i=1}^m( (h_θ(x_i)-y_i) x_{ij} ) </math> | ||
:<math>= \frac{1}{m} (h_θ(x)-y) x_{j} </math> | :<math>= \frac{1}{m} (h_θ(x)-y) x_{j} </math> | ||
+ | |||
+ | =Week2= | ||
+ | ==multivariate linear regression== | ||
+ | <math>h_θ(x) = θ^Tx</math> | ||
+ | 其中, | ||
+ | <math> | ||
+ | x=\begin{vmatrix} | ||
+ | x_0 \\ | ||
+ | x_1 \\ | ||
+ | x_2 \\ | ||
+ | ... \\ | ||
+ | x_m | ||
+ | \end{vmatrix}, | ||
+ | θ=\begin{vmatrix} | ||
+ | θ_0 \\ | ||
+ | θ_1\\ | ||
+ | θ_2\\ | ||
+ | ...\\ | ||
+ | θ_m | ||
+ | \end{vmatrix} | ||
+ | </math> |
2018年12月21日 (五) 17:09的版本
目录 |
Week1
Cost Function损失函数
Squared error function/Mean squared function均方误差: [math]J(θ)=\frac{1}{2m}\sum_{i=1}^m(h_θ(x_i)-y_i)^2[/math]
Cross entropy交叉熵: [math]J(θ)=-\frac{1}{m}\sum_{i=1}^m[y^{(i)}*logh_θ(x^{(i)})+(1-y^{(i)})*log(1-h_θ(x^{(i)}))][/math]
Gradient Descent梯度下降
[math]θ_j:=θ_j+α\frac{∂}{∂θ_j}J(θ)[/math]
对于线性模型,其损失函数为均方误差,故有(这里输入训练数据x为m*n矩阵, 线性参数[math]θ[/math]为n*1,[math]x_i[/math]代表训练矩阵中的第i行,[math]x_{ik}[/math]代表第i行第k列):
[math]\frac{∂}{∂θ_j}J(θ)= \frac{∂}{∂θ_j}(\frac{1}{2m}\sum_{i=1}^m(h_θ(x_i)-y_i)^2)[/math]
- [math]= \frac{1}{2m}\frac{∂}{∂θ_j}(\sum_{i=1}^m(h_θ(x_i)-y_i)^2)[/math]
- [math]= \frac{1}{2m}\sum_{i=1}^m( \frac{∂}{∂θ_j}(h_θ(x_i)-y_i)^2 )[/math]
- [math]= \frac{1}{m}\sum_{i=1}^m( (h_θ(x_i)-y_i) \frac{∂}{∂θ_j}h_θ(x_i) ) //链式求导法式[/math]
- [math]= \frac{1}{m}\sum_{i=1}^m( (h_θ(x_i)-y_i) \frac{∂}{∂θ_j}x_iθ ) [/math]
- [math]= \frac{1}{m}\sum_{i=1}^m( (h_θ(x_i)-y_i) \frac{∂}{∂θ_j}\sum_{k=0}^{n-1}x_{ik}θ_k ) [/math]
对于j>=1:
- [math]= \frac{1}{m}\sum_{i=1}^m( (h_θ(x_i)-y_i) x_{ij} ) [/math]
- [math]= \frac{1}{m} (h_θ(x)-y) x_{j} [/math]
Week2
multivariate linear regression
[math]h_θ(x) = θ^Tx[/math]
其中,
[math]
x=\begin{vmatrix}
x_0 \\
x_1 \\
x_2 \\
... \\
x_m
\end{vmatrix},
θ=\begin{vmatrix}
θ_0 \\
θ_1\\
θ_2\\
...\\
θ_m
\end{vmatrix}
[/math]