“ML”的版本间的差异

来自个人维基
跳转至: 导航搜索
Gradient Descent梯度下降
第1行: 第1行:
=Cost Function损失函数=
+
=Week1=
 +
==Cost Function损失函数==
 
Squared error function/Mean squared function均方误差: <math>J(&theta;)=\frac{1}{2m}\sum_{i=1}^m(h_&theta;(x_i)-y_i)^2</math>
 
Squared error function/Mean squared function均方误差: <math>J(&theta;)=\frac{1}{2m}\sum_{i=1}^m(h_&theta;(x_i)-y_i)^2</math>
 
Cross entropy交叉熵: <math>J(&theta;)=-\frac{1}{m}\sum_{i=1}^m[y^{(i)}*logh_&theta;(x^{(i)})+(1-y^{(i)})*log(1-h_&theta;(x^{(i)}))]</math>
 
Cross entropy交叉熵: <math>J(&theta;)=-\frac{1}{m}\sum_{i=1}^m[y^{(i)}*logh_&theta;(x^{(i)})+(1-y^{(i)})*log(1-h_&theta;(x^{(i)}))]</math>
  
=Gradient Descent梯度下降=
+
==Gradient Descent梯度下降==
 
<math>&theta;_j:=&theta;_j+&alpha;\frac{&part;}{&part;&theta;_j}J(&theta;)</math>
 
<math>&theta;_j:=&theta;_j+&alpha;\frac{&part;}{&part;&theta;_j}J(&theta;)</math>
 
对于线性模型,其损失函数为均方误差,故有(这里输入训练数据x为m*n矩阵, 线性参数<math>&theta;</math>为n*1,<math>x_i</math>代表训练矩阵中的第i行,<math>x_{ik}</math>代表第i行第k列):
 
对于线性模型,其损失函数为均方误差,故有(这里输入训练数据x为m*n矩阵, 线性参数<math>&theta;</math>为n*1,<math>x_i</math>代表训练矩阵中的第i行,<math>x_{ik}</math>代表第i行第k列):
第15行: 第16行:
 
:<math>= \frac{1}{m}\sum_{i=1}^m( (h_&theta;(x_i)-y_i) x_{ij} ) </math>
 
:<math>= \frac{1}{m}\sum_{i=1}^m( (h_&theta;(x_i)-y_i) x_{ij} ) </math>
 
:<math>= \frac{1}{m} (h_&theta;(x)-y) x_{j}  </math>
 
:<math>= \frac{1}{m} (h_&theta;(x)-y) x_{j}  </math>
 +
 +
=Week2=
 +
==multivariate linear regression==
 +
<math>h_&theta;(x) = &theta;^Tx</math>
 +
其中,
 +
<math>
 +
x=\begin{vmatrix}
 +
x_0  \\
 +
x_1 \\
 +
x_2 \\
 +
... \\
 +
x_m
 +
\end{vmatrix},
 +
&theta;=\begin{vmatrix}
 +
&theta;_0 \\
 +
&theta;_1\\
 +
&theta;_2\\
 +
...\\
 +
&theta;_m
 +
\end{vmatrix}
 +
</math>

2018年12月21日 (五) 17:09的版本

目录

Week1

Cost Function损失函数

Squared error function/Mean squared function均方误差: [math]J(θ)=\frac{1}{2m}\sum_{i=1}^m(h_θ(x_i)-y_i)^2[/math]
Cross entropy交叉熵: [math]J(θ)=-\frac{1}{m}\sum_{i=1}^m[y^{(i)}*logh_θ(x^{(i)})+(1-y^{(i)})*log(1-h_θ(x^{(i)}))][/math]

Gradient Descent梯度下降

[math]θ_j:=θ_j+α\frac{∂}{∂θ_j}J(θ)[/math]
对于线性模型,其损失函数为均方误差,故有(这里输入训练数据x为m*n矩阵, 线性参数[math]θ[/math]为n*1,[math]x_i[/math]代表训练矩阵中的第i行,[math]x_{ik}[/math]代表第i行第k列):
[math]\frac{∂}{∂θ_j}J(θ)= \frac{∂}{∂θ_j}(\frac{1}{2m}\sum_{i=1}^m(h_θ(x_i)-y_i)^2)[/math]

[math]= \frac{1}{2m}\frac{∂}{∂θ_j}(\sum_{i=1}^m(h_θ(x_i)-y_i)^2)[/math]
[math]= \frac{1}{2m}\sum_{i=1}^m( \frac{∂}{∂θ_j}(h_θ(x_i)-y_i)^2 )[/math]
[math]= \frac{1}{m}\sum_{i=1}^m( (h_θ(x_i)-y_i) \frac{∂}{∂θ_j}h_θ(x_i) ) //链式求导法式[/math]
[math]= \frac{1}{m}\sum_{i=1}^m( (h_θ(x_i)-y_i) \frac{∂}{∂θ_j}x_iθ ) [/math]
[math]= \frac{1}{m}\sum_{i=1}^m( (h_θ(x_i)-y_i) \frac{∂}{∂θ_j}\sum_{k=0}^{n-1}x_{ik}θ_k ) [/math]

对于j>=1:

[math]= \frac{1}{m}\sum_{i=1}^m( (h_θ(x_i)-y_i) x_{ij} ) [/math]
[math]= \frac{1}{m} (h_θ(x)-y) x_{j} [/math]

Week2

multivariate linear regression

[math]h_θ(x) = θ^Tx[/math]
其中,
[math] x=\begin{vmatrix} x_0 \\ x_1 \\ x_2 \\ ... \\ x_m \end{vmatrix}, θ=\begin{vmatrix} θ_0 \\ θ_1\\ θ_2\\ ...\\ θ_m \end{vmatrix} [/math]