“ML”的版本间的差异

来自个人维基
跳转至: 导航搜索
multivariate linear regression
第19行: 第19行:
 
=Week2=
 
=Week2=
 
==multivariate linear regression==
 
==multivariate linear regression==
<math>h_&theta;(x) = &theta;^Tx</math>
+
<math>h_&theta;(x) = &theta;_0x_0 + &theta;_1x_1 + &theta;_2x_2 + ... + &theta;_nx_n = &theta;^Tx</math>
 
其中,
 
其中,
 
<math>
 
<math>
第28行: 第28行:
 
... \\
 
... \\
 
x_m
 
x_m
\end{vmatrix},  
+
\end{vmatrix}
 +
= \begin{vmatrix}
 +
x_0^{(0)} & x_0^{(1)} & x_0^{(2)} & ... & x_0^{(n)} \\
 +
x_1^{(0)} & x_1^{(1)} & x_1^{(2)} & ... & x_1^{(n)} \\
 +
... & ... & ... & ... & ...\\
 +
x_m^{(0)} & x_m^{(1)} & x_m^{(2)} & ... & x_m^{(n)} \\
 +
\end{vmatrix}
 +
,  
 
&theta;=\begin{vmatrix}
 
&theta;=\begin{vmatrix}
 
&theta;_0 \\
 
&theta;_0 \\
第34行: 第41行:
 
&theta;_2\\
 
&theta;_2\\
 
...\\
 
...\\
&theta;_m
+
&theta;_n
\end{vmatrix}
+
\end{vmatrix}, m为训练数据组数,n为特征个数。
 
</math>
 
</math>

2018年12月21日 (五) 17:32的版本

目录

Week1

Cost Function损失函数

Squared error function/Mean squared function均方误差: [math]J(θ)=\frac{1}{2m}\sum_{i=1}^m(h_θ(x_i)-y_i)^2[/math]
Cross entropy交叉熵: [math]J(θ)=-\frac{1}{m}\sum_{i=1}^m[y^{(i)}*logh_θ(x^{(i)})+(1-y^{(i)})*log(1-h_θ(x^{(i)}))][/math]

Gradient Descent梯度下降

[math]θ_j:=θ_j+α\frac{∂}{∂θ_j}J(θ)[/math]
对于线性模型,其损失函数为均方误差,故有(这里输入训练数据x为m*n矩阵, 线性参数[math]θ[/math]为n*1,[math]x_i[/math]代表训练矩阵中的第i行,[math]x_{ik}[/math]代表第i行第k列):
[math]\frac{∂}{∂θ_j}J(θ)= \frac{∂}{∂θ_j}(\frac{1}{2m}\sum_{i=1}^m(h_θ(x_i)-y_i)^2)[/math]

[math]= \frac{1}{2m}\frac{∂}{∂θ_j}(\sum_{i=1}^m(h_θ(x_i)-y_i)^2)[/math]
[math]= \frac{1}{2m}\sum_{i=1}^m( \frac{∂}{∂θ_j}(h_θ(x_i)-y_i)^2 )[/math]
[math]= \frac{1}{m}\sum_{i=1}^m( (h_θ(x_i)-y_i) \frac{∂}{∂θ_j}h_θ(x_i) ) //链式求导法式[/math]
[math]= \frac{1}{m}\sum_{i=1}^m( (h_θ(x_i)-y_i) \frac{∂}{∂θ_j}x_iθ ) [/math]
[math]= \frac{1}{m}\sum_{i=1}^m( (h_θ(x_i)-y_i) \frac{∂}{∂θ_j}\sum_{k=0}^{n-1}x_{ik}θ_k ) [/math]

对于j>=1:

[math]= \frac{1}{m}\sum_{i=1}^m( (h_θ(x_i)-y_i) x_{ij} ) [/math]
[math]= \frac{1}{m} (h_θ(x)-y) x_{j} [/math]

Week2

multivariate linear regression

[math]h_θ(x) = θ_0x_0 + θ_1x_1 + θ_2x_2 + ... + θ_nx_n = θ^Tx[/math]
其中,
[math] x=\begin{vmatrix} x_0 \\ x_1 \\ x_2 \\ ... \\ x_m \end{vmatrix} = \begin{vmatrix} x_0^{(0)} & x_0^{(1)} & x_0^{(2)} & ... & x_0^{(n)} \\ x_1^{(0)} & x_1^{(1)} & x_1^{(2)} & ... & x_1^{(n)} \\ ... & ... & ... & ... & ...\\ x_m^{(0)} & x_m^{(1)} & x_m^{(2)} & ... & x_m^{(n)} \\ \end{vmatrix} , θ=\begin{vmatrix} θ_0 \\ θ_1\\ θ_2\\ ...\\ θ_n \end{vmatrix}, m为训练数据组数,n为特征个数。 [/math]