“ML”的版本间的差异
小 (→Gradient Descent梯度下降) |
小 |
||
第7行: | 第7行: | ||
<math>θ_j:=θ_j+α\frac{∂}{∂θ_j}J(θ)</math> | <math>θ_j:=θ_j+α\frac{∂}{∂θ_j}J(θ)</math> | ||
对于线性模型,其损失函数为均方误差,故有(这里输入训练数据x为m*n矩阵, 线性参数<math>θ</math>为n*1,<math>x_i</math>代表训练矩阵中的第i行,<math>x_{ik}</math>代表第i行第k列): | 对于线性模型,其损失函数为均方误差,故有(这里输入训练数据x为m*n矩阵, 线性参数<math>θ</math>为n*1,<math>x_i</math>代表训练矩阵中的第i行,<math>x_{ik}</math>代表第i行第k列): | ||
+ | :注: | ||
+ | ::<math>x_j^{(i)}</math>:训练数据中的第i列中的第j个特征值 value of feature j in the ith training example | ||
+ | ::<math>x^{(i)}</math>:训练数据中第i列 the input (features) of the ith training example | ||
+ | ::<math>m</math>:训练数据集条数 the number of training examples | ||
+ | ::<math>n</math>:特征数量 the number of features | ||
+ | |||
<math>\frac{∂}{∂θ_j}J(θ)= \frac{∂}{∂θ_j}(\frac{1}{2m}\sum_{i=1}^m(h_θ(x_i)-y_i)^2)</math> | <math>\frac{∂}{∂θ_j}J(θ)= \frac{∂}{∂θ_j}(\frac{1}{2m}\sum_{i=1}^m(h_θ(x_i)-y_i)^2)</math> | ||
:<math>= \frac{1}{2m}\frac{∂}{∂θ_j}(\sum_{i=1}^m(h_θ(x_i)-y_i)^2)</math> | :<math>= \frac{1}{2m}\frac{∂}{∂θ_j}(\sum_{i=1}^m(h_θ(x_i)-y_i)^2)</math> |
2018年12月21日 (五) 20:12的版本
目录 |
Week1
Cost Function损失函数
Squared error function/Mean squared function均方误差: [math]J(θ)=\frac{1}{2m}\sum_{i=1}^m(h_θ(x_i)-y_i)^2[/math]
Cross entropy交叉熵: [math]J(θ)=-\frac{1}{m}\sum_{i=1}^m[y^{(i)}*logh_θ(x^{(i)})+(1-y^{(i)})*log(1-h_θ(x^{(i)}))][/math]
Gradient Descent梯度下降
[math]θ_j:=θ_j+α\frac{∂}{∂θ_j}J(θ)[/math]
对于线性模型,其损失函数为均方误差,故有(这里输入训练数据x为m*n矩阵, 线性参数[math]θ[/math]为n*1,[math]x_i[/math]代表训练矩阵中的第i行,[math]x_{ik}[/math]代表第i行第k列):
- 注:
- [math]x_j^{(i)}[/math]:训练数据中的第i列中的第j个特征值 value of feature j in the ith training example
- [math]x^{(i)}[/math]:训练数据中第i列 the input (features) of the ith training example
- [math]m[/math]:训练数据集条数 the number of training examples
- [math]n[/math]:特征数量 the number of features
[math]\frac{∂}{∂θ_j}J(θ)= \frac{∂}{∂θ_j}(\frac{1}{2m}\sum_{i=1}^m(h_θ(x_i)-y_i)^2)[/math]
- [math]= \frac{1}{2m}\frac{∂}{∂θ_j}(\sum_{i=1}^m(h_θ(x_i)-y_i)^2)[/math]
- [math]= \frac{1}{2m}\sum_{i=1}^m( \frac{∂}{∂θ_j}(h_θ(x_i)-y_i)^2 )[/math]
- [math]= \frac{1}{m}\sum_{i=1}^m( (h_θ(x_i)-y_i) \frac{∂}{∂θ_j}h_θ(x_i) ) //链式求导法式[/math]
- [math]= \frac{1}{m}\sum_{i=1}^m( (h_θ(x_i)-y_i) \frac{∂}{∂θ_j}x_iθ ) [/math]
- [math]= \frac{1}{m}\sum_{i=1}^m( (h_θ(x_i)-y_i) \frac{∂}{∂θ_j}\sum_{k=0}^{n}x_i^{(k)}θ_k ) [/math]
对于j>=1:
- [math]= \frac{1}{m}\sum_{i=1}^m( (h_θ(x_i)-y_i) x_i^{(j)} ) [/math]
- [math]= \frac{1}{m} (h_θ(x)-y) x_{j} [/math]
Week2
Multivariate Linear Regression
[math]h_θ(x) = θ_0x_0 + θ_1x_1 + θ_2x_2 + ... + θ_nx_n[/math]
- [math] = [θ_0x_0^{(1)}, θ_0x_0^{(2)}, ..., θ_0x_0^{(m)}] + [θ_1x_1^{(1)}, θ_1x_1^{(2)}, ..., θ_1x_1^{(m)}] + ... + [θ_nx_n^{(1)}, θ_nx_n^{(2)}, ..., θ_nx_n^{(m)}] [/math]
- [math] = [θ_0x_0^{(1)}+θ_1x_1^{(1)}+...+θ_nx_n^{(1)}, \ \ \ θ_0x_0^{(2)}+θ_1x_1^{(2)}+...+θ_nx_n^{(2)}, \ \ \ θ_0x_0^{(m)}+θ_1x_1^{(m)}+...+θ_nx_n^{(m)}] [/math]
- [math] = θ^Tx[/math]
其中,
[math]
x=\begin{vmatrix}
x_0 \\
x_1 \\
x_2 \\
... \\
x_n
\end{vmatrix}
= \begin{vmatrix}
x_0^{(1)} & x_0^{(2)} & ... & x_0^{(m)} \\
x_1^{(1)} & x_1^{(2)} & ... & x_1^{(m)} \\
x_2^{(1)} & x_2^{(2)} & ... & x_2^{(m)} \\
... & ... & ... & ...\\
x_m^{(1)} & x_m^{(2)} & ... & x_n^{(m)} \\
\end{vmatrix}
,
θ=\begin{vmatrix}
θ_0 \\
θ_1\\
θ_2\\
...\\
θ_n
\end{vmatrix}
[/math]
- m为训练数据组数,n为特征个数(通常,为了方便处理,会令[math]x_0^{(i)}=1, i=1,2,...,m)[/math]。
Feature Scaling & Standard Normalization
[math]
x_i := \frac{x_i-μ_i}{s_i}
[/math]
其中,[math]μ_i[/math]是第i个特征数据x_i的均值,而 [math]s_i[/math]则要视情况而定:
- Feature Scaling:[math]s_i[/math]为[math]x_i[/math]中最大值与最小值的差(max-min);
- Standard Normalization:[math]s_i[/math]为[math]x_i[/math]中数据标准差(standard deviation)。