ML

来自个人维基
2018年12月25日 (二) 16:40Hovercool讨论 | 贡献的版本

跳转至: 导航搜索

目录

定义

约定:
[math]x_j^{(i)}[/math]:训练数据中的第i列中的第j个特征值 value of feature j in the ith training example
[math]x^{(i)}[/math]:训练数据中第i列 the input (features) of the ith training example
[math]m[/math]:训练数据集条数 the number of training examples
[math]n[/math]:特征数量 the number of features

Week1 - 机器学习基本概念

Cost Function损失函数

Squared error function/Mean squared function均方误差: [math]J(θ)=\frac{1}{2m}\sum_{i=1}^m(h_θ(x^{(i)})-y^{(i)})^2[/math]
Cross entropy交叉熵: [math]J(θ)=-\frac{1}{m}\sum_{i=1}^m[y^{(i)}*logh_θ(x^{(i)})+(1-y^{(i)})*log(1-h_θ(x^{(i)}))][/math]

Gradient Descent梯度下降

[math]θ_j:=θ_j-α\frac{∂}{∂θ_j}J(θ)[/math]
对于线性回归模型,其损失函数为均方误差,故有:
[math]\frac{∂}{∂θ_j}J(θ)= \frac{∂}{∂θ_j}(\frac{1}{2m}\sum_{i=1}^m(h_θ(x^{(i)})-y^{(i)})^2)[/math]

[math]= \frac{1}{2m}\frac{∂}{∂θ_j}(\sum_{i=1}^m(h_θ(x^{(i)})-y^{(i)})^2)[/math]
[math]= \frac{1}{2m}\sum_{i=1}^m( \frac{∂}{∂θ_j}(h_θ(x^{(i)})-y^{(i)})^2 )[/math]
[math]= \frac{1}{m}\sum_{i=1}^m( (h_θ(x^{(i)})-y^{(i)}) \frac{∂}{∂θ_j}h_θ(x^{(i)}) ) //链式求导法式[/math]
[math]= \frac{1}{m}\sum_{i=1}^m( (h_θ(x^{(i)})-y^{(i)}) \frac{∂}{∂θ_j}x^{(i)}θ ) [/math]
[math]= \frac{1}{m}\sum_{i=1}^m( (h_θ(x^{(i)})-y^{(i)}) \frac{∂}{∂θ_j}\sum_{k=0}^{n}x_k^{(i)}θ_k ) [/math]

对于j>=1:

[math]= \frac{1}{m}\sum_{i=1}^m( (h_θ(x^{(i)})-y^{(i)}) x_j^{(i)} ) [/math]
[math]= \frac{1}{m} (h_θ(x)-y) x_{j} [/math]

Week2 - Multivariate Linear Regression

Multivariate Linear Regression模型的计算

[math]h_θ(x) = θ_0x_0 + θ_1x_1 + θ_2x_2 + ... + θ_nx_n[/math]

[math] = [θ_0x_0^{(1)}, θ_0x_0^{(2)}, ..., θ_0x_0^{(m)}] + [θ_1x_1^{(1)}, θ_1x_1^{(2)}, ..., θ_1x_1^{(m)}] + ... + [θ_nx_n^{(1)}, θ_nx_n^{(2)}, ..., θ_nx_n^{(m)}] [/math]
[math] = [θ_0x_0^{(1)}+θ_1x_1^{(1)}+...+θ_nx_n^{(1)}, \ \ \ θ_0x_0^{(2)}+θ_1x_1^{(2)}+...+θ_nx_n^{(2)}, \ \ \ θ_0x_0^{(m)}+θ_1x_1^{(m)}+...+θ_nx_n^{(m)}] [/math]
[math] = θ^Tx[/math]

其中,
[math] x=\begin{vmatrix} x_0 \\ x_1 \\ x_2 \\ ... \\ x_n \end{vmatrix} = \begin{vmatrix} x_0^{(1)} & x_0^{(2)} & ... & x_0^{(m)} \\ x_1^{(1)} & x_1^{(2)} & ... & x_1^{(m)} \\ x_2^{(1)} & x_2^{(2)} & ... & x_2^{(m)} \\ ... & ... & ... & ...\\ x_n^{(1)} & x_n^{(2)} & ... & x_n^{(m)} \\ \end{vmatrix} , θ=\begin{vmatrix} θ_0 \\ θ_1\\ θ_2\\ ...\\ θ_n \end{vmatrix} [/math]

m为训练数据组数,n为特征个数(通常,为了方便处理,会令[math]x_0^{(i)}=1, i=1,2,...,m)[/math]

数据归一化:Feature Scaling & Standard Normalization

[math] x_i := \frac{x_i-μ_i}{s_i} [/math]
其中,[math]μ_i[/math]是第i个特征数据x_i的均值,而 [math]s_i[/math]则要视情况而定:

  • Feature Scaling:[math]s_i[/math][math]x_i[/math]中最大值与最小值的差(max-min);
  • Standard Normalization:[math]s_i[/math][math]x_i[/math]中数据标准差(standard deviation)。

特别注意,通过 Feature scaling训练出模型后,在进行预测时,同样需要对输入特征数据进行归一化。

Normal Equation标准工程

[math]θ = (X^TX)^{-1}X^Ty[/math]

Week3 - Logistic Regression & Overfitting

Logistic Regression

Sigmoid Function - S函数

[math]h_θ(x)=g(θ^Tx)[/math]
[math]z = θ^Tx[/math]
[math]g(z) = \frac{1}{1+e^{-z}}[/math]

Cost Function

[math]J(θ)=-\frac{1}{m}\sum_{i=1}^m[y^{(i)}*logh_θ(x^{(i)})+(1-y^{(i)})*log(1-h_θ(x^{(i)}))][/math]
向量化形式:
[math] J(θ) = \frac{1}{m}( -y^Tlog(h) - (1-y)^Tlog(1-h) ) [/math]

Gradient Descent

[math]J(θ)=-\frac{1}{m}\sum_{i=1}^m[y^{(i)}*logh_θ(x^{(i)})+(1-y^{(i)})*log(1-h_θ(x^{(i)}))][/math]
[math]θ_j:=θ_j-α\frac{∂}{∂θ_j}J(θ)[/math]

[math]= θ_j-\frac{α}{m}\sum_{i=1}^m( (h_θ(x^{(i)})-y^{(i)}) x_j^{(i)} ) [/math]

[math]\frac{∂}{∂θ_j}J(θ) = \frac{∂}{∂θ_j}\{-\frac{1}{m}\sum_{i=1}^m[y^{(i)}*logh_θ(x^{(i)})+(1-y^{(i)})*log(1-h_θ(x^{(i)}))]\}[/math]

[math]=-\frac{1}{m}\sum_{i=1}^m\frac{∂}{∂θ_j}[y^{(i)}*logh_θ(x^{(i)})+(1-y^{(i)})*log(1-h_θ(x^{(i)}))][/math]

其中,
[math]\frac{∂}{∂θ_j}[y^{(i)}*logh_θ(x^{(i)})][/math]




向量化形式:
[math] θ = θ - \frac{α}{m}X^T(g(Xθ) - \vec y) [/math]

解决Overfitting

针对 hypothesis function,引入 Regularation parameter([math]λ[/math])到 Cost function中:
[math]J(θ)=\frac{1}{2m}\sum_{i=1}^m(h_θ(x^{(i)})-y^{(i)})^2 + λ\sum_{j=1}^nθ_j^2[/math]