ML
来自个人维基
目录[隐藏] |
Week1
Cost Function损失函数
Squared error function/Mean squared function均方误差: J(θ)=12mm∑i=1(hθ(xi)−yi)2
Cross entropy交叉熵: J(θ)=−1mm∑i=1[y(i)∗loghθ(x(i))+(1−y(i))∗log(1−hθ(x(i)))]
Gradient Descent梯度下降
θj:=θj+α∂∂θjJ(θ)
对于线性模型,其损失函数为均方误差,故有(这里输入训练数据x为m*n矩阵, 线性参数θ为n*1,xi代表训练矩阵中的第i行,xik代表第i行第k列):
∂∂θjJ(θ)=∂∂θj(12mm∑i=1(hθ(xi)−yi)2)
- =12m∂∂θj(m∑i=1(hθ(xi)−yi)2)
- =12mm∑i=1(∂∂θj(hθ(xi)−yi)2)
- =1mm∑i=1((hθ(xi)−yi)∂∂θjhθ(xi))//链式求导法式
- =1mm∑i=1((hθ(xi)−yi)∂∂θjxiθ)
- =1mm∑i=1((hθ(xi)−yi)∂∂θjn−1∑k=0xikθk)
对于j>=1:
- =1mm∑i=1((hθ(xi)−yi)xij)
- =1m(hθ(x)−y)xj
Week2
multivariate linear regression
hθ(x)=θTx
其中,
x=|x0x1x2...xm|,θ=|θ0θ1θ2...θm|