ML

来自个人维基
2018年12月21日 (五) 18:49Hovercool讨论 | 贡献的版本

跳转至: 导航搜索

目录

 [隐藏

Week1

Cost Function损失函数

Squared error function/Mean squared function均方误差: J(θ)=12mmi=1(hθ(xi)yi)2
Cross entropy交叉熵: J(θ)=1mmi=1[y(i)loghθ(x(i))+(1y(i))log(1hθ(x(i)))]

Gradient Descent梯度下降

θj:=θj+αθjJ(θ)
对于线性模型,其损失函数为均方误差,故有(这里输入训练数据x为m*n矩阵, 线性参数θ为n*1,xi代表训练矩阵中的第i行,xik代表第i行第k列):
θjJ(θ)=θj(12mmi=1(hθ(xi)yi)2)

=12mθj(mi=1(hθ(xi)yi)2)
=12mmi=1(θj(hθ(xi)yi)2)
=1mmi=1((hθ(xi)yi)θjhθ(xi))//
=1mmi=1((hθ(xi)yi)θjxiθ)
=1mmi=1((hθ(xi)yi)θjnk=0xikθk)

对于j>=1:

=1mmi=1((hθ(xi)yi)xij)
=1m(hθ(x)y)xj

Week2

Multivariate Linear Regression

hθ(x)=θ0x0+θ1x1+θ2x2+...+θnxn

=[θ0x(1)0,θ0x(2)0,...,θ0x(m)0]+[θ1x(1)1,θ1x(2)1,...,θ1x(m)1]+...+[θnx(1)n,θnx(2)n,...,θnx(m)n]
=[θ0x(1)0+θ1x(1)1+...+θnx(1)n,   θ0x(2)0+θ1x(2)1+...+θnx(2)n,   θ0x(m)0+θ1x(m)1+...+θnx(m)n]
=θTx

其中,
x=|x0x1x2...xn|=|x(1)0x(2)0...x(m)0x(1)1x(2)1...x(m)1x(1)2x(2)2...x(m)2............x(1)mx(2)m...x(m)n|,θ=|θ0θ1θ2...θn|

m为训练数据组数,n为特征个数(通常,为了方便处理,会令x(i)0=1,i=1,2,...,m

Feature Scaling & Standard Normalization

xi:=xiμisi
其中,μi是第i个特征数据x_i的均值,而 si则要视情况而定:

  • Feature Scaling:sixi中最大值与最小值的差(max-min);
  • Standard Normalization:sixi中数据标准差(standard deviation)。