ML

来自个人维基
2019年1月2日 (三) 21:20Hovercool讨论 | 贡献的版本

(差异) ←上一版本 | 最后版本 (差异) | 下一版本→ (差异)
跳转至: 导航搜索

目录

 [隐藏

定义

约定:
x(i)j:训练数据中的第i列中的第j个特征值 value of feature j in the ith training example
x(i):训练数据中第i列 the input (features) of the ith training example
m:训练数据集条数 the number of training examples
n:特征数量 the number of features

Week1 - 机器学习基本概念

Cost Function损失函数

Squared error function/Mean squared function均方误差: J(θ)=12mmi=1(hθ(x(i))y(i))2
Cross entropy交叉熵: J(θ)=1mmi=1[y(i)loghθ(x(i))+(1y(i))log(1hθ(x(i)))]

Gradient Descent梯度下降

θj:=θjαθjJ(θ)
对于线性回归模型,其损失函数为均方误差,故有:
θjJ(θ)=θj(12mmi=1(hθ(x(i))y(i))2)

=12mθj(mi=1(hθ(x(i))y(i))2)
=12mmi=1(θj(hθ(x(i))y(i))2)
=1mmi=1((hθ(x(i))y(i))θjhθ(x(i)))//
=1mmi=1((hθ(x(i))y(i))θjx(i)θ)
=1mmi=1((hθ(x(i))y(i))θjnk=0x(i)kθk)

对于j>=1:

=1mmi=1((hθ(x(i))y(i))x(i)j)
=1m(hθ(x)y)xj

Week2 - Multivariate Linear Regression

Multivariate Linear Regression模型的计算

hθ(x)=θ0x0+θ1x1+θ2x2+...+θnxn

=[θ0x(1)0,θ0x(2)0,...,θ0x(m)0]+[θ1x(1)1,θ1x(2)1,...,θ1x(m)1]+...+[θnx(1)n,θnx(2)n,...,θnx(m)n]
=[θ0x(1)0+θ1x(1)1+...+θnx(1)n,   θ0x(2)0+θ1x(2)1+...+θnx(2)n,   θ0x(m)0+θ1x(m)1+...+θnx(m)n]
=θTx

其中,
x=|x0x1x2...xn|=|x(1)0x(2)0...x(m)0x(1)1x(2)1...x(m)1x(1)2x(2)2...x(m)2............x(1)nx(2)n...x(m)n|,θ=|θ0θ1θ2...θn|

m为训练数据组数,n为特征个数(通常,为了方便处理,会令x(i)0=1,i=1,2,...,m

数据归一化:Feature Scaling & Standard Normalization

xi:=xiμisi
其中,μi是第i个特征数据x_i的均值,而 si则要视情况而定:

  • Feature Scaling:sixi中最大值与最小值的差(max-min);
  • Standard Normalization:sixi中数据标准差(standard deviation)。

特别注意,通过 Feature scaling训练出模型后,在进行预测时,同样需要对输入特征数据进行归一化。

Normal Equation标准工程

θ=(XTX)1XTy

Week3 - Logistic Regression & Overfitting

Logistic Regression

Sigmoid Function - S函数

hθ(x)=g(θTx)
z=θTx
g(z)=11+ez

Cost Function

J(θ)=1mmi=1[y(i)loghθ(x(i))+(1y(i))log(1hθ(x(i)))]
向量化形式:
J(θ)=1m(yTlog(h)(1y)Tlog(1h))

Gradient Descent

θj:=θjαθjJ(θ)

=θjαmmi=1((hθ(x(i))y(i))x(i)j)

附推导过程如下:

θjJ(θ)=θj{1mmi=1[y(i)loghθ(x(i))+(1y(i))log(1hθ(x(i)))]}
=1mmi=1θj[y(i)loghθ(x(i))+(1y(i))log(1hθ(x(i)))] 1)
其中,
θj[y(i)loghθ(x(i))]=y(i)θj[loghθ(x(i))]=y(i)hθ(x(i))ln(e)θjhθ(x(i))
θj[(1y(i))log(1hθ(x(i)))]=(1y(i))θj[log(1hθ(x(i)))]=(1y(i))(1hθ(x(i)))ln(e)θj(1hθ(x(i)))
由于θj(1hθ(x(i)))=θjhθ(x(i)),故有:
θj[y(i)loghθ(x(i))+(1y(i))log(1hθ(x(i)))]=y(i)hθ(x(i))ln(e)θjhθ(x(i))+(1y(i))(1hθ(x(i)))ln(e)θj(1hθ(x(i)))
=y(i)hθ(x(i))ln(e)θjhθ(x(i))(1y(i))(1hθ(x(i)))ln(e)θjhθ(x(i))
=(y(i)hθ(x(i))ln(e)(1y(i))(1hθ(x(i)))ln(e))θjhθ(x(i))
=y(i)hθ(x(i))hθ(x(i))(1hθ(x(i)))ln(e)θjhθ(x(i)) //将 hθ(x(i))=g(z)=11+ez代入
=y(i)(1+ez)2(1+ez)ezln(e)θjhθ(x(i))
=y(i)(1+ez)2(1+ez)ezθjhθ(x(i)) 2)


θjhθ(x(i))=g(z)z(θTx(i))=(11+ez)z(θTx(i))
=((1+ez)1)z(θTx(i))
=ez(1+ez)2z(θTx(i))
=ez(1+ez)2θj(θTx(i))
=ez(1+ez)2θj(θ0x(i)0+θ1x(i)1+θ2x(i)2+...+θjx(i)j+...+θnx(i)n)
=ez(1+ez)2x(i)j 3)
将式3)代入式2):
θj[y(i)loghθ(x(i))+(1y(i))log(1hθ(x(i)))]=(y(i)11+ez)x(i)j
=(y(i)hθ(x(i)))x(i)j 4)
将式4)代入式1):
θj:=θjαmmi=1((hθ(x(i))y(i))x(i)j)


向量化形式:
θ=θαmXT(g(Xθ)y)

解决Overfitting

针对 hypothesis function,引入 Regularation parameter(λ)到 Cost function中:
J(θ)=12mmi=1(hθ(x(i))y(i))2+λnj=1θ2j

Week4 - Neural networks神经网络

Neural netorwk.png

对于上述神经网络,其各个layer可如下计算:
a(2)1=g(θ(1)10x0+θ(1)11x1+θ(1)12x2+θ(1)13x3)
a(2)2=g(θ(1)20x0+θ(1)21x1+θ(1)22x2+θ(1)23x3)
a(2)3=g(θ(1)30x0+θ(1)31x1+θ(1)32x2+θ(1)33x3)
hθ(x)=a(3)1=g(θ(2)10a(2)0+θ(2)11a(2)1+θ(2)12a(2)2+θ(2)13a(2)3)
  • 一个神经网络,如果其在j层有sj个神经元,在j+1层有sj+1个神经元,则θj将是 sj+1(sj+1)