“《概率论与数理统计》笔记”的版本间的差异
来自个人维基
小 (→正态分布) |
小 (→随机变量) |
||
第13行: | 第13行: | ||
==随机变量== | ==随机变量== | ||
+ | 设随机试验的样本空间为<math>S</math>,对于试验的每一个结果<math>w ∈ S</math>,<math>X</math>都有一个指定的实数<math>X=X(w)</math>与之对应,则称<math>X</math>为随机变量。 | ||
+ | ===离散型随机变量=== | ||
+ | |||
+ | ===连续型随机变量=== | ||
设<math>X</math>是随机变量,如果存在在整个实数轴上的可积函数<math>f(x)</math>,满足: | 设<math>X</math>是随机变量,如果存在在整个实数轴上的可积函数<math>f(x)</math>,满足: | ||
:(1) <math>f(x)\ge0</math>, 其中<math>(-\infty<x<+\infty)</math> | :(1) <math>f(x)\ge0</math>, 其中<math>(-\infty<x<+\infty)</math> | ||
− | :(2) <math>\int_{-\infty} | + | :(2) <math>\int_{-\infty}{+\infty}f(x)=1</math> |
:(3) <math>P\{a \le X \le b\}=\int_{a}^{b}f(x)dx</math> | :(3) <math>P\{a \le X \le b\}=\int_{a}^{b}f(x)dx</math> | ||
则称<math>X</math>是连续型随机变量,而<math>f(x)</math>称为<math>X</math>的'''概率密度函数''',简称'''概率密度'''。 | 则称<math>X</math>是连续型随机变量,而<math>f(x)</math>称为<math>X</math>的'''概率密度函数''',简称'''概率密度'''。 | ||
− | ===均匀分布=== | + | ====均匀分布==== |
设连续型随机变量<math>X</math>具有概率密码函数, | 设连续型随机变量<math>X</math>具有概率密码函数, | ||
:::<math>f(x) = | :::<math>f(x) = | ||
第30行: | 第34行: | ||
则称<math>X</math>在区间<math>(a, b)</math>上服从均匀分布,记为<math>X \sim U(a, b)</math>. | 则称<math>X</math>在区间<math>(a, b)</math>上服从均匀分布,记为<math>X \sim U(a, b)</math>. | ||
− | ===指数分布=== | + | ====指数分布==== |
设连续型随机变量<math>X</math>具有概率密码函数, | 设连续型随机变量<math>X</math>具有概率密码函数, | ||
:::<math>f(x) = | :::<math>f(x) = | ||
第40行: | 第44行: | ||
其中<math>\beta > 0</math>为常数,则称<math>X</math>服从以<math>\beta</math>为参数的指数分布,记为<math>X \sim E(\beta)</math>. | 其中<math>\beta > 0</math>为常数,则称<math>X</math>服从以<math>\beta</math>为参数的指数分布,记为<math>X \sim E(\beta)</math>. | ||
− | ===正态分布/高斯分布=== | + | ====正态分布/高斯分布==== |
设连续型随机变量<math>X</math>具有概率密码函数, | 设连续型随机变量<math>X</math>具有概率密码函数, | ||
:::<math>f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{\frac{-(x-u)^2}{2\sigma^2}} (-\infty<x<+\infty)</math> | :::<math>f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{\frac{-(x-u)^2}{2\sigma^2}} (-\infty<x<+\infty)</math> | ||
其中<math>u, \sigma</math>为常数,则称<math>X</math>服从以<math>u, \sigma</math>为参数的正态分布,又称高斯分布,记为<math>X \sim N(u,\sigma^2)</math>. | 其中<math>u, \sigma</math>为常数,则称<math>X</math>服从以<math>u, \sigma</math>为参数的正态分布,又称高斯分布,记为<math>X \sim N(u,\sigma^2)</math>. |
2018年3月22日 (四) 21:46的版本
概率论与数理统计,是研究随机现象所具有的统计规律性的数学学科。
目录 |
事件的概率
条件概率
A已发生的条件下,B的概率:
- [math]P(B|A)=\frac{P(AB)}{P(A)}[/math]
另有:
- [math]P(\bar{B}|A)=1-\frac{P(AB)}{P(A)}[/math]
乘法公式
- [math]P(AB)=P(B|A)P(A)[/math]
- 若 P(AB)=P(A)P(B),则称事件A和事件B相互独立。
随机变量
设随机试验的样本空间为[math]S[/math],对于试验的每一个结果[math]w ∈ S[/math],[math]X[/math]都有一个指定的实数[math]X=X(w)[/math]与之对应,则称[math]X[/math]为随机变量。
离散型随机变量
连续型随机变量
设[math]X[/math]是随机变量,如果存在在整个实数轴上的可积函数[math]f(x)[/math],满足:
- (1) [math]f(x)\ge0[/math], 其中[math](-\infty\lt x\lt +\infty)[/math]
- (2) [math]\int_{-\infty}{+\infty}f(x)=1[/math]
- (3) [math]P\{a \le X \le b\}=\int_{a}^{b}f(x)dx[/math]
则称[math]X[/math]是连续型随机变量,而[math]f(x)[/math]称为[math]X[/math]的概率密度函数,简称概率密度。
均匀分布
设连续型随机变量[math]X[/math]具有概率密码函数,
- [math]f(x) = \begin{cases} \frac{1}{b-a} &(a\lt x\lt b) \\ 0 &(其他) \end{cases} [/math]
则称[math]X[/math]在区间[math](a, b)[/math]上服从均匀分布,记为[math]X \sim U(a, b)[/math].
指数分布
设连续型随机变量[math]X[/math]具有概率密码函数,
- [math]f(x) = \begin{cases} \frac{1}{\beta}e^{\frac {-x}{\beta}} &(x\gt 0) \\ 0 &(其他) \end{cases} [/math]
其中[math]\beta \gt 0[/math]为常数,则称[math]X[/math]服从以[math]\beta[/math]为参数的指数分布,记为[math]X \sim E(\beta)[/math].
正态分布/高斯分布
设连续型随机变量[math]X[/math]具有概率密码函数,
- [math]f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{\frac{-(x-u)^2}{2\sigma^2}} (-\infty\lt x\lt +\infty)[/math]
其中[math]u, \sigma[/math]为常数,则称[math]X[/math]服从以[math]u, \sigma[/math]为参数的正态分布,又称高斯分布,记为[math]X \sim N(u,\sigma^2)[/math].